HYSTERESIS
CURVE PLOTTING

APPLICATION NOTE 108

HEWLETT PACKARD MOSELEY DIVISION
HYSTERESIS CURVE PLOTTING

The usefulness of recorded hysteresis curves; B-H, force-displacement, or thermodynamic, has long been recognized in system testing and analysis. Permanent records of hysteresis curves have often been limited to small inaccurate pictures of oscilloscope traces that are difficult to graphically analyze. The following should help to categorize and simplify some of the presently available methods for obtaining permanent records of hysteresis curves using X-Y recorders.

In each of the following setups, the key instrument is the Moseley 101 Waveform Translator. Its function is to transform via sampling techniques, the high frequency data to a low frequency that can easily be handled by an X-Y recorder. The Moseley 101, when operating in an X-Y mode rather than Y-T (time), requires an external trigger. The external trigger source must be synchronized to within a fraction of a cycle per second of the signal generator. The following setups demonstrate methods of obtaining the external trigger.

METHOD I

TRIGGER VIA INDEPENDENT GENERATOR

The first technique, (Figure 1) is to adjust two independent oscillators until their frequencies are within a fraction of a cycle per second. One oscillator excites the test body with a sin wave, the other supplies a square wave trigger signal for the Moseley 101. The oscillator frequencies should be matched to within a 1/4 or 1/5 of a cycle per second. This would allow 4 to 5 seconds for the trace to be made. This technique, although difficult to maintain (because of oscillator frequency drift), is effective below 1 kc.

![Figure 1. Trigger via Independent Generator](image-url)
METHOD II

TRIGGER VIA PHASE SHIFT

The second system (Figure 2a, b) uses the phase lag dial on a Model 203A as a manual scan control to develop the trigger for the Moseley 101. This setup can be used at frequencies up to 60 kc (limited by the Model 203A). The only limitation here is that the smoothness of the trace is, to some extent, determined by the operator's care in turning the phase dial.

NOTE: In methods one and two a spike may appear in the X-Y trace. The Ramp Generator and Comparator Card in the Moseley 101 is not used in this mode of operation. Removal of this card will eliminate the spike.

FIGURE 2a. METHOD II IN OPERATION

FIGURE 2b. TRIGGER VIA PHASE SHIFT
SCHEMATIC WAVE FORM TRANSLATOR.
TYPE 101 MOD FOR B-H LOOP PLOTTING.
METHOD III

TRIGGER VIA AUXILIARY OSCILLOSCOPE

The third setup (Figure 3) requires an oscilloscope that has a sawtooth available from either the rear horizontal deflection plates or the front panel. The sawtooth voltage must be attenuated to 4 - 5 volts peak to peak. Then a slight modification, discussed later, must be performed to the Moseley 101. The advantages of this setup is being able to use the automatic sweep mode in the 101 which will give traces free of any ripples that the operator may have induced in the Figure 2 setup and allows the remote pen lift capabilities of the recorder to be interlocked with the Waveform Translator.

![Figure 3. Trigger via Oscilloscope](image)

FIGURE 3. TRIGGER VIA OSCILLOSCOPE

METHOD IV

TRIGGER AND AMPLIFICATION VIA OSCILLOSCOPE

It should be remembered that the Moseley 101 was primarily developed for accurately recording oscilloscope traces with Moseley X-Y plotters. As such, the vertical and horizontal oscilloscope amplifiers could replace the transducer amplifiers shown in Figures 1, 2, and 3. In many oscilloscopes the sweep and sync remain operative and are simply disconnected from the horizontal deflection plates when the horizontal amplifier is being used for an external X input signal. This leads to Figure 4 which provides the same capabilities as Figure 3 but requires an oscilloscope modification (discussed under Oscilloscopes). The advantage here is that a slight modification (usually no more than a switch that short or opens 2 places in the oscilloscope circuit) usually eliminates the need for transducer amplifiers and thus saves equipment.

![Figure 4. Trigger and Amplification via Oscilloscope](image)

FIGURE 4. TRIGGER AND AMPLIFICATION VIA OSCILLOSCOPE

This means if one of the first three setups is being used, the amplifiers should put the signal in this range. If the signal is larger, the 101 will clip; if smaller, noise from the 101 will appear.

A method of operating with a lower voltage level is by shorting out the attenuator resistors in the 101 oscilloscope probe (R-201 and R-202). The 101 input will then only require 2 to 5 volts Peak to Peak.

This has the disadvantage of lowering the input impedance of the 101 to approximately 20K. The output impedance of the transducer amplifier must then be less than 200 ohms to prevent the lowering of the 1% system accuracy. Depending on the application the H-P Models 450A, 466A, 465A, and 467A are all possibilities for the transducer amplifier.

CAUTION: Shorting the probe leaves the 101 circuitry without protection. Do not hook the modified probe to the oscilloscope plates without first checking the voltages.

101 EXTERNAL TRIGGER MODIFICATION FOR AUTOMATIC PLOTTING

The modification to the Moseley 101 necessary for the set-up shown in Figures 3 and 4 is indicated in red on D-18319. The indicated sawtooth switch is optional. For a permanent X-Y setup the switch is unnecessary but if the 101 is also to be used for Y-T recording the switch will return the recorder to an unmodified state. The resistors shown are Not those of the attenuator shown in Figure 3 and 4. The resistors establish a D.C. bias to insure sampling of the complete trace.

The required components for modification are:

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mfd/12 volt Capacitor</td>
<td>0180-0340</td>
</tr>
<tr>
<td>18K 5% 1/2 watt Resistor</td>
<td>0686-1835</td>
</tr>
<tr>
<td>43K 5% 1/2 watt Resistor</td>
<td>0686-4335</td>
</tr>
<tr>
<td>Slide Switch (optional)</td>
<td>3101-0011</td>
</tr>
</tbody>
</table>
All components for the 101 modification can easily be added to the bottom of the 101. The vacant pin "D" on each printed circuit connector provides convenient tie points.

The optional switch can be mounted on the rear panel. For convenience the strobe polarity switch on the rear panel could be utilized for this function since this feature is not essential.

NOTE: The function of the strobe is to indicate on the oscilloscope face the point of the waveform being sampled. The strobe polarity switch determines whether the trace is either brightened or blanked on the oscilloscope face.

The wires can be removed from the strobe polarity switch and deadened or shorted to give permanent brightening or blacking of the strobe. The switch can then be used as the optional external sawtooth switch.

CAUTION: The attenuator shown in Figures 3 and 4 is very important for protecting the 101 circuitry. It should reduce the sawtooth voltage to 4 or 5 volts peak to peak. The design of the attenuator depends upon the oscilloscope and is left up to the operator.

OSCILLOSCOPE MODIFICATION

In all the setups, oscilloscope amplifiers can be used to amplify the transducer signals. The Hewlett-Packard 130C oscilloscope can be purchased with rear deflection plate terminals that easily connect to the Moseley 101. The model number to order is C41-130C. When connecting the 101 oscilloscope probe to the deflection plates, disconnect the 2 axis shorting strap on the back of the oscilloscope case. A partial list of oscilloscopes and the methods of connecting to their deflection plates when used as amplifiers only, is attached.

If you desire to use the oscilloscopes both as a transducer amplifier and to obtain a synchronized sweep as in Figure 4, then actual oscilloscope modifications rather than just connections must be made. For this setup the oscilloscope must be equipped with a separate horizontal attenuator and sweep rate control (Example Model 130C). Usually two oscilloscope circuits must be modified:

1. Normally when the oscilloscope is used in the X-Y mode, power is removed from several tube plates in the sweep circuit. This voltage must be reapplied to obtain the sawtooth required by the Moseley 101.

2. Starting the sweep will activate the blanking circuit since we are making a continuous trace the blanking circuit must be disabled. Usually nothing more is required that removing power from the blanking tube circuit.

The mounting of a double pole, single throw switch on the oscilloscope to perform the appropriate switching for the sweep and blanking circuits is probably desirable. Note that even though the sweep rate switch will not control the oscilloscope picture, the length of the sweep sawtooth wave will determine the area of the hysteresis curve to be sampled. The sweep rate should be adjusted to allow the complete curve to be sampled once. This can easily be set by turning the manual sweep control on the 101 and watching the strobe move on the oscilloscope face and then adjusting the sweep rate on the oscilloscope. Information on this modification for some oscilloscopes is available. Step by step modification procedures are not available.

MERITS OF THE VARIOUS SETUPS

Many connection techniques are available with variations existing mainly between the quantity of equipment required and the ease of setting it up. For permanent installations Figure 4 is best because of the minimum amount of equipment involved. For a temporary setup such as a demonstration, Figure 2 with an oscilloscope as the transducer amplifier is easiest to achieve since no modifications are required.

Many combinations of equipment not mentioned here could be used. In Figure 3 a Model 3300A oscillator could replace the drive generator and oscilloscope. A triangle (not sawtooth) generator at one half the drive generator frequency (to obtain the same duration of a positive going ramp function) could be used to simultaneously drive the modified Moseley 101 and the external sync input of the Model 3300A. Thus, numerous combinations of equipment can meet a wide variation of system requirements.
<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Address</th>
<th>Phone</th>
<th>TWX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Huntsville</td>
<td>2003 Bryson Spring Rd. S.W.</td>
<td>(205) 381-4991</td>
<td>510-579-2204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALASKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Scottsdale</td>
<td>3009 No. Scottsdale Rd.</td>
<td>(602) 945-5001</td>
<td>602-945-0111</td>
</tr>
<tr>
<td></td>
<td>Tucson</td>
<td>230 So. Tucson Blvd.</td>
<td>(602) 623-2564</td>
<td>602-792-2759</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sacramento</td>
<td>2591 Carlsbad Ave.</td>
<td>(619) 482-1463</td>
<td>916-444-5883</td>
</tr>
<tr>
<td></td>
<td>San Diego</td>
<td>1025 Shaffer Street</td>
<td>(714) 733-8102</td>
<td>714-276-4263</td>
</tr>
<tr>
<td></td>
<td>Palo Alto</td>
<td>1101 Embarcadero Rd.</td>
<td>(415) 327-2500</td>
<td>910-373-1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLORADO</td>
<td>Englewood</td>
<td>7925 East Prentice</td>
<td>(303) 771-9455</td>
<td>303-771-3066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>Middletown</td>
<td>2695 East Prentice</td>
<td>(303) 771-9455</td>
<td>303-771-3066</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLORIDA</td>
<td>Miami</td>
<td>2507 Northwest 7th St.</td>
<td>(305) 635-6451</td>
<td>635-6451</td>
</tr>
<tr>
<td></td>
<td>Orlando</td>
<td>621 Commonwealth Ave.</td>
<td>(305) 636-5651</td>
<td>305-275-1234</td>
</tr>
<tr>
<td></td>
<td>St. Petersburg</td>
<td>410 150th Ave., Madeira Beach</td>
<td>(813) 351-3171</td>
<td>813-351-3171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEORGIA</td>
<td>Atlanta</td>
<td>30305 30 Maple Drive, N.E.</td>
<td>(404) 233-1341</td>
<td>810-703-3283</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>Skokie</td>
<td>5500 Howard Street</td>
<td>(312) 677-6000</td>
<td>910-223-3613</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIANA</td>
<td>Indianapolis</td>
<td>46205 3819 Meadows Dr.</td>
<td>(317) 946-6991</td>
<td>317-635-4300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>New Orleans</td>
<td>504 522-0159</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARYLAND</td>
<td>Baltimore</td>
<td>21297 6660 Security Blvd</td>
<td>(301) 944-5400</td>
<td>410-887-5884</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td>Burlington</td>
<td>01804 Middlesex (turpike)</td>
<td>(617) 272-9000</td>
<td>710-332-0382</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>Southfield</td>
<td>48076 24315 Northwestern Hwy.</td>
<td>(313) 555-1100</td>
<td>313-333-4425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>St. Paul</td>
<td>55114 2459 University Ave.</td>
<td>(612) 446-8061</td>
<td>950-563-3734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSOURI</td>
<td>Kansas City</td>
<td>64131 7916 Paseo Street</td>
<td>(816) 444-9943</td>
<td>816-506-2423</td>
</tr>
<tr>
<td></td>
<td>St. Louis</td>
<td>63144 2814 South Brentwood Blvd.</td>
<td>(314) 647-4050</td>
<td>314-962-3933</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>Eatontown</td>
<td>08519 351 Grand Avenue</td>
<td>(201) 567-9553</td>
<td>910-567-9553</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>Albuquerque</td>
<td>87108 5503 Lomas Blvd.</td>
<td>(505) 255-5566</td>
<td>910-699-1655</td>
</tr>
<tr>
<td></td>
<td>Las Cruces</td>
<td>88001 114 S. Walnut Street</td>
<td>(505) 526-2486</td>
<td>505-526-2677</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW YORK</td>
<td>New York</td>
<td>10022 236 East 75th Street</td>
<td>(212) 877-2023</td>
<td>710-581-4376</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>Richmond</td>
<td>22320 2122 Spencer Road</td>
<td>(703) 202-5051</td>
<td>718-995-0157</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>Bellevue</td>
<td>98004 11656 N. E. 8th St.</td>
<td>(206) 453-0071</td>
<td>910-443-2303</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td>Montreal</td>
<td>20010 20010 20010 20010 20010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ottawa</td>
<td>20100 20100 20100 20100 20100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toronto</td>
<td>20100 20100 20100 20100 20100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>20100 20100 20100 20100 20100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEWLETT-PACKARD INTERNATIONAL OFFICES
Electronic Instrument Sales and Service

ARGENTINA
Mauricio A. Suarez
Telecomunicaciones
Carril Calvo 224, Buenos Aires
Tel: 50-6312

AUSTRALIA
Sample Electronics (Vic.) Pty. Ltd.
2-11 Grenville Street
Richmond E. 1, Victoria
Tel: 42-7475 (3 lines)
Sample Electronics (N.S.W.) Pty. Ltd.
4 Grose Street, Glebe, N.S.W.
Tel: 69-6338 (3 lines)

AUSTRIA
UNILABOR H.m.b.H.
Wissenschaftliche Instrumente
Rummelhardtgasse 6/3
P.O. Box 83, Vienna 01/71
Tel: 42 61 81

BELGIUM
Hewlett-Packard Benelux
20-2 L. de l’Hopital, Brussels 1
Tel: 11.22.29

BRAZIL
Ciental Importacoe e Comercio Ltda.
R. Des Etios Guillerme, 62
Sao Paulo 6
Tel: 32-4332

CHILE
Hector Gafague
Casilla 19042, Santiago
Tel: 642.426

COLOMBIA
Instrumentacion Henrik V. Langeboek & Cia. Ltda.
Apartado Aereo 6287
Bogota 1, D.E.
Tel: 45.7995
Cable: AIRIS - Bogota

DENMARK
Tage Olsen A/S
Kompagnietorget, Copenhagen 0
Tel: 29.48.00

FINLAND
INTO O/Y
P.O. Box 153
21 Munkkinkatu, Helsinki
Tel: 61.11.33

FRANCE
Hewlett-Packard France
158 Blvd. Massena, Paris 13e
Tel: 707.97.18

GERMANY
Hewlett-Packard VmgmbH
Tiefdamm 35, Hamburg 1
Tel: 24.05.51

Hewlett-Packard VmgmbH
Kurieuxannstrasse 95
Frankfurt a, Main
Tel: 52.06.36

Hewlett-Packard VmgmbH
Regentinstrasse 13
Munich 9
Tel: 41.53.11.17

Hewlett-Packard VmgmbH
Technische Büro
Herrenbergerstrasse 110
393 Sulingen, Wurttemberg
Tel: 6971

Hewlett-Packard VmgmbH
Lietzenburger Strasse 30
1000 Berlin 30
Tel: 24 32.71

GREECE
K. Karayannis
Klafthmonos Square, Athens 124
Tel: 226.310

INDIA
The Scientific Instrument Company, Ld.
6, Tel Bahadur Sapru Road, Allahabad 1
Tel: 2493

The Scientific Instrument Company, Ld.
240, Dr. Babasaheb Naroji Rd., Bombay 1
Tel: 26-2643

The Scientific Instrument Company, Ld.
11, Esplanade East, Calcutta 1
Tel: 23-4139

The Sci., Tropic Instrument Company, Ld.
30, Mount Road, Madras 2
Tel: 86339

The Scientific Instrument Company, Ld.
B-7, Ajmer Gate Ext., New Delhi 1
Tel: 27053

IRELAND
Telecom Ltd.
P.O. Box 1112, Dublin
Tel: 43580

ISRAEL
Electronics & Engineering Ltd.
16 Kamatski St., Tel Aviv
Tel: 38871-23

ITALY
Hewlett-Packard Italiana S.p.A.
Viale Lusigiana 46, Milan
Tel: 69.15.84.125/6

Hewlett-Packard Italiana S.p.A.
Piazza Adriatica, 25, Roma E"r
Tel: 59.12.544/5

JAPAN
Yokogawa-Hewlett-Packard Ltd.
22-17 Ishikawa-cho
Nagoya 46, Tokyo
Tel: 403-6511

Yokogawa-Hewlett-Packard Ltd.
No. 3, 3-Chome, Aoyama-Kita-machi
Aoyama, Tokyo
Tel: 333-9086

KOREA
American Trading Company, Korea, Ltd.
112-35 Sokong-Dong, Jung-ku
Seoul P.O. Box 1108, Seoul
Tel: 59.07.93, 3616

NETHERLANDS
Hewlett-Packard Benelux N.V.
23 Burg Rijnstraat, Amsterdam W.
Tel: 221.33.98.99 and 13.54.99

NEW ZEALAND
Sample Electronics (N.Z.) Ltd.
5 Matipo Street
Onehunga 3 E. 5, Auckland
Tel: 565-88

NORWAY
Morgenstjerne & Co. A/S
Ingeniørforretning
6 Vessels Gade, Oslo
Tel: 29 18 35

PAKISTAN
Electronics Baloa, S.A.
P.O. Box 4920
Panama City 6, Panama
Tel: 3-9333

PERU
Fernando Espeople B.
Casilla 3061
Lima
Tel: 7873

PORTUGAL
TELLECTRA
Rua Rodrigo de Fonseca 103
P.O. Box 258, Lisbon 1
Tel: 66 80 72 and 68 66 73 and 68 60 74

PUERTO RICO & VIRGIN ISLANDS
San Juan Electronics, Inc.
150 Ponce de Leon, Shop 3
P.O. Box 5167
Pta. de Tierra Sta., San Juan 00906
Tel: 725-3424, 724-4466

SPAIN
ATAO, Ingenieros
Enrique Larreta 12, Madrid 6
Tel: 235.42.44 and 23.45.43

SOUTH AFRICA
F. H. Flieter & Co. (Pty.) Ltd.
Rosella House
Burlington Street, Cape Town
Tel: 5-3917

SWEDEN
Hlo Instrument AB
Centralanlagen 28, Solna, Centrum
Tel: 63.06.80

Hlo Instrument AB
Idunsgatan 28A
Goteborg
Tel: 27 68 00 and 27 68 01

SWITZERLAND
Max Paul Frey
Wankdorfstrasse 66, Berne
Tel: 031-42.00.78

TAIWAN (FORMOSA)
Hua Sheng Electronic Co., Ltd.
21, Rening West Road, Taipei
Tel: 4 6076, 4 5936

TURKEY
TELEKOM Engineering Bureau
P.O. Box 716-1, Baglar, Istanbul
Tel: 45.42.40

UNITED KINGDOM
Hewlett-Packard Ltd.
Dallas Rd., Bedford, England
Tel: 66052

VENEZUELA
Cicero, C. C.
Edif. Arimas-OF, #6
Avda. Francisco de Miranda-Chacalt
Apartado del Este 10.837, Caracas
Tel: 71.88.05

YUGOSLAVIA
Belram S.A.
83 Avenm des Mimosas
Brasserie, 15, Belgium
Tel: 29.29.38

For Sales and Service Assistance in Areas Not Listed Contact:

IN EUROPE
Hewlett-Packard, S. A.
54 Route des Acacias
Geneva, Switzerland
Telephone: 022 42.81.50
Telex: 22488
Cable: HNEWPACK

IN LATIN AMERICA
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: 415-399-7000
Telex: 910-317-921

IN ELSEWHERE
Hewlett-Packard
Overseas Sales Department
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: 415-399-7000
Telex: 910-317-921
