Application Note 164-2

CALCULATOR CONTROL of the 8660A/B/C SYNTHESIZED SIGNAL GENERATOR (Optional HP-IB Interface)

APPLICATION NOTE 164-2

CALCULATOR CONTROL of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ SYNTHESIZED SIGNAL GENERATOR (Optional HP-IB Interface)

HEWLETT hp PACKARD

First Printing Nov. 1974
Second Printing (Rev.) Oct. 1975
Third Printing Aug. 1979

CONTENTS

Page
INTRODUCTION 1
CHAPTER 1. Programmable Functions 2
CW Frequency 2
Output Level 2
Amplitude Modulation 2
Frequency Modulation 2
Phase Modulation 3
FM CAL 3
Frequency Stepping 3
CHAPTER 2. Instrument Configuration 4
8660A/B/C Synthesized Signal Generator 4
9820A/21A Calculator 4
9830A Calculator 4
CHAPTER 3. Hardware Connection 4
CHAPTER 4. Programming Format 5
Putting the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ into Remote 5
Addressing the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ 5
8660A/B/C Programming Sequence 5
CHAPTER 5. 8660A/B/G Programming Gonventions 7
Digit Reversal (Inversion) 7
Frequency Scale 7
Output Level Scale 7
Modulation Source and Modulation Mode 8
Modulation Level 8
Output States After LOCAL \rightarrow REMOTE Transition 8
Output States After REMOTE \rightarrow LOCAL Transition 8
First Frequency Change after REMOTE \rightarrow LOCAL Transition 9
CHAPTER 6. 9820A/21A Calculator Control of the 8660A/B/C. 10
Addressing the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ 10
Programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ with Literals 11
Programming the 8660A/B/C with Variables 15
CHAPTER 7. 9830A Calculator Control of the 8660A/B/C 23
Addressing the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ 23
Programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ with Literals 25
Programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ with Variables 29
CHAPTER 8. Timing Considerations 33
Inhibit Feature Defeated 33
Inhibit Period too Short 34
APPENDIX A. Output Subroutines (9820A/21A) 35
APPENDIX B. Output Subroutines (9830A) 37

INTRODUCTION

The HP Model 8660A/B/C Synthesized Signal Generator is a programmable instrument. This means that most of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s functions (frequency, output level, modulation parameters) can be controlled by an external device such as a computer, calculator, or card reader.

When equipped with Option 005, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ can be controlled by one of these external devices via the Hewlett-Packard Interface Bus (HP - IB).

This application note provides the information necessary to write HP Model $9820 \mathrm{~A} / 21 \mathrm{~A}$ or 9830 A calculator programs which will control the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Option 005 Synthesized Signal Generator, via the HP-IB. The emphasis in this application note will be on calculator programming examples. Hardware considerations will be included only in the chapters on Instrument Configuration (Chapter 2), Hardware Connection (Chapter 3) and Instrument Timing (Chapter 8).

It is assumed that the reader is already familiar with the operation of both the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ and at least one of the calculators. If not, consult these instruments' respective operating and service manuals.

CHAPTER I
 PROGLAMMABLE FUNCTIONS

CW FREQUENCY (Center Frequency)

Frequency may be programmed over the full frequency range of the RF plug-in being used. Below 1300 MHz , frequency resolution is 1 Hz (100 Hz with Option 004 $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$). Above 1300 MHz , resolution is 2 Hz (200 Hz with Option 0048660 A/B/C).

OUTPUT LEVEL

Output level is programmable in 1 dB steps over the full output range of the RF Section plug-in installed.

AMPLITUDE MODULATION [86632A/B, 86633A/B Modulation Section]

Amplitude modulation mode, modulation source, and modulation depth are all programmable. Modulation depth can be programmed in 1% steps from 0 to 99%.

FREQUENCY MODULATION (86632A/B, 86633A/B, 86635A Modulation Section)

FM mode, modulation source, and peak FM deviation can all be remotely programmed when using the above modulation section plug-ins.

The resolution to which FM deviation can be programmed depends on which plug-in is installed and, in the case of the 86603A RF Section, on whether the selected RF carrier frequency is above or below 1300 MHz . The range over which FM deviation can be programmed depends on which mode range is selected. ($\mathrm{FM} \times 0.1, \mathrm{FM} \times 1.0, \mathrm{FM} \times 10-86632 \mathrm{~A} / \mathrm{B}, 86635 \mathrm{~A} ; \mathrm{FM} \times 0.1, \mathrm{FM} \times 1.0-86633 \mathrm{~A} / \mathrm{B}$).

Table 1-1 shows the resolution and range for each combination of modulation section plug-in, MODE, and center frequency range ($<1300 \mathrm{MHz}, \geq 1300 \mathrm{MHz}$). In addition, because it is necessary to program half the desired deviation for certain combinations of plug-ins and center frequencies, the table also indicates when the actual FM deviation will be twice the programmed value.

Below 1300 MHz , the actual FM deviation must not exceed the range listed for each mode in Table 1-1, even though it may be possible to program outside that range.

Here is an example of how to use Table 1-1.
It is desired to program an 86632B to an FM deviation of 18 kHz when the RF Section is at a frequency $<1300 \mathrm{MHz}$. The table tells us to program FM MODE to FM $\times \mathbf{1 . 0}$, and to program 9 kHz deviation, i.e., one-half of the desired (actual) FM deviation.

It is also possible to program 9 kHz deviation in the $\mathbf{F M} \times \mathbf{0 . 1}$ mode. However, because the actual deviation would now be 18 kHz , and because this deviation exceeds the range of the $\mathbf{F M} \mathbf{x} \mathbf{0 . 1}$ mode ($0-9.9 \mathrm{kHz}$), the modulation section would now be operating out of spec.

Table 1-1. FM Programming Ranges and Resolutions

Plug-in	RF Center Frequency (MHz)	MODE (RANGE)		
		$\begin{array}{ccc} \text { FM } \times 0.1 \\ (0-9.9 & \mathrm{kHz}) \end{array}$	$\begin{gathered} \text { FM } \times 1.0 \\ (0-99 \mathrm{kHz}) \end{gathered}$	$\begin{gathered} \text { FM } \times 10 \\ (0.990 \mathrm{kHz}) \end{gathered}$
86632A	$\begin{aligned} & <1300 \\ & \geq 1300 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{kHz} \\ & 0.2 \mathrm{kHz}^{*} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kHz} \\ & 2 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{kHz} \\ & 20 \mathrm{kHz}^{\star} \end{aligned}$
86632B	$\begin{aligned} & <1300 \\ & \geq 1300 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{kHz}^{*} \\ & 0.2 \mathrm{kHz}^{*} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kHz}^{*} \\ & 2 \mathrm{kHz}^{*} \end{aligned}$	$\begin{aligned} & 20 \mathrm{kHz}^{*} \\ & 20 \mathrm{kHz}^{*} \end{aligned}$
86633A	$\begin{aligned} & <1300 \\ & \geq 1300 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{kHz} \\ & 0.2 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kHz} \\ & 2 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { N. A. } \\ & \text { N. A. } \end{aligned}$
86633B	$\begin{aligned} & <1300 \\ & \geq 1300 \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{kHz} \\ & 0.2 \mathrm{kHz}^{*} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kHz} \\ & 2 \mathrm{kHz} \end{aligned}$	N. A. N. A.
86635A	$\begin{aligned} & <1300 \\ & \geq 1300 \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{kHz}^{*} \\ & 0.2 \mathrm{kHz}^{*} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kHz}^{\star} \\ & 2 \mathrm{kHz}^{\star} \end{aligned}$	$\begin{aligned} & 20 \mathrm{kHz}^{*} \\ & 20 \mathrm{kHz}^{*} \end{aligned}$

* Actual FM deviation is twice the programmed value.
N. A. $=$ Not Available

PHASE MODULATION (86634A, 86835A)

$\phi \mathrm{M}$ mode, modulation source, and $\phi \mathrm{M}$ deviation can all be remotely programmed when using the 86635 A . Below 1300 MHz , the resolution to which $\phi \mathrm{M}$ deviation can be programmed is 2° over a range of $0-100^{\circ}$. Above 1300 MHz , the resolution to which $\phi \mathrm{M}$ deviation can be programmed is also 2°, but over a wider range of $0-200^{\circ}$. The actual $\phi \mathrm{M}$ deviation is always twice the programmed value.

Only $\phi \mathrm{M}$ mode can be programmed when using the 86634 A .

FM CAL (86632A/B, 86635A)

The FM CAL function of the $86632 \mathrm{~A} / \mathrm{B}$ and the 86635 A can be remotely programmed.

FREQUENCY STEPPING (8660B/C)

The frequency step function of the $8660 \mathrm{~B} / \mathrm{C}$ can be remotely programmed. Below 1300 MHz , minimum programmable step size is 1 Hz . Above 1300 MHz , minimum programmable step size is 2 Hz .

INSTRUMENT CONFIGUIATION

8660A/B/C SYNTHESIZED SIGNAL GENERATOR

In order to be HP - IB compatible the 8660A/B/C Synthesized Signal Generator must be equipped (either factory installed or retrofit) with Option 005.

9820A/21A CALCULATOR

In order to be HP - IB compatible, the 9820A/21A Calculator must be equipped with a 11144 A ASCII Bus Interface Card, a 11224 A Peripheral Control II ROM and a 10631 A/B/C ASCII Interface Cable. The 11224A and the 10631 C are available as standard accessories with the 11144A-020 ASCII Bus Interface Card.

9830A CALCULATOR

In order to be HP - IB compatible, the 9830A Calculator must be equipped with a 11144 A ASCII Bus Interface Card, a $11272 \mathrm{~B} / \mathrm{F}$ or Option 272 Extended I/O ROM, and a $10631 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ ASCII Interface Cable. The $11272 \mathrm{~B} / \mathrm{F}$ and the 10631 C are available as standard accessories with the 11144A-030 ASCII Bus Interface Card.

CHAPTER 3 HARDWARE CONNECTION

The picture below shows the connections necessary between the $9820 \mathrm{~A} / 21 \mathrm{~A}$ or 9830 A Calculator and the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.

CHAPTER 4

PROGRAMMING FORMAT

While the actual software commands used to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ depend on which calculator is being used, the general format of these commands does not. This chapter outlines the basic format. Programming examples are given in Chapter 6 and 7.

PUTTING THE 86B0A/B/C INTO REMOTE

Before any of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s function can be controlled externally by a calculator, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ must be placed in the remote mode of operation. In remote, all front panel controls except for the ON-OFF switch and FM CAL are locked out.

To place the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ in remote, the remote line must be enabled and, in addition, the instrument must be addressed.

ADDRESSING THE 8660A/B/C

Addressing is a convention for determining which instruments in an HP - IB system are to send, which are to receive and which are to ignore programming information.

The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is capable of receiving and ignoring, but is not capable of sending, information on the HP - IB.

In order for the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to receive programming information it must be addressed to listen and the calculator must be addressed to talk. In order to make the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ ignore programming information being sent to other instruments, it must be unaddressed. While unaddressed, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will remain insensitive to any information being sent to other instruments in a system.

8660A/B/C PROGRAMMING SEQUENCE

Once the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is in remote and addressed to listen, its functions can be programmed. The format for programming the instrument's functions is as follows:

1. Output a setting for the function to be programmed. This setting will be either a frequency, output level, or modulation parameter depending on what program code follows.
2. Output a program code to tell the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ which function is to be programmed. Upon receipt of the program code the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will switch the programmed function to its new state.

Program codes consist of a single character. These codes and their associated functions are shown in Table 4-1.

Table 4-1. Program Codes, Addresses, and Modulation Codes

Program Codes	Calculator Character
Center Frequency	1
${ }^{1}$ Frequency Step \uparrow	A
${ }^{1}$ Frequency Step \downarrow	B
${ }^{2}$ Frequency x 2	G
${ }^{2}$ Frequency $\times 1$	1
Output Level	C
AM-FM- ϕ M Function	\$
Modulation Level	\%
${ }^{3} \mathrm{FM}$ CAL	
Addresses	
8660A/B/C Listen (Factory Set)	3
Other 8660A/B/C Listen	;
Other $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Listen for	$<$
Other $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Listen $\} \begin{aligned} & \text { multiple } \\ & \text { units }^{4}\end{aligned}$	$=$
Other 8660A/B/C Listen	>
Universal Unlisten	?
Calculator Talk	U
${ }^{5}$ Device Clear	DISPLAY 4
Modulation Source (Output Before Mode)	
INT 1 kHz	1
INT 400 Hz	2
EXT DC	4
EXT AC	8
${ }^{\text {6 EXT }}$ AC Unleveled	9
Modulation Mode (Output After Source)	
Modulation OFF	0
7FM $\times 10$	1
FM $\times 1.0$	2
FM $\times 0.1$	4
${ }^{8} \mathrm{AM}$	8
${ }^{9} \phi$ M	$<$

$18660 \mathrm{~B} / \mathrm{C}$ only.

$28660 \mathrm{~A} / \mathrm{B}$ equipped with 86603 A (Option 003) RF Section.
$386632 \mathrm{~A} / \mathrm{B}, 86635 \mathrm{~A}$.
4 Listen address is changed by resetting switches on the HP-IB Input Assembly Board (mainframe serial prefix 1947A and above). For earlier prefix numbers, listen address is changed by re-wiring jumpers on the HP-IB Input Assembly Board.
5 Sets frequency to 1 MHz , turns modulation OFF. Also sets attenuation to -140 dBm (RF Sections serial prefix 1335A and above).
$686633 \mathrm{~A} / \mathrm{B}$ only.
$786632 \mathrm{~A} / \mathrm{B}$ and 86635 A only.
8 86632A/B, 86633A/B only.
986635 A only.

CHAPTER 5

 8660A/B/C PROGRAMMING CONVENTIONSSeveral programming conventions unique to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ are described below:

DIGIT REVERSAL (Inversion)

In order to satisfy the internal logic requirements of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$, the least significant digits and the most significant digits of all numerical settings (frequency, output level, \% AM, FM deviation) must be exchanged. In order to do this, the resolution for the function to be programmed and the maximum allowable number of significant digits must be known.

Resolution for each function is given in Chapter 1. The table below lists the allowable number of significant digits for each $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ function.

Table 5-1. Programmable Significant Digits

Function	Number of Significant Digits
Frequency	10
Output Level	3
\% AM	2
FM Deviation (all ranges) ϕ M 2	

Thus to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to 0012476538 Hz (10 significant digits), the number 8356742100 would be output to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$. To program 07% AM modulation (2 significant digits), the number 70 would be output.

Chapters 6 and 7 will demonstrate short, fast software subroutines which do this digit reversal automatically.

FREQUENCY SCALE

All frequencies are expressed in Hz (as opposed to gigahertz or megahertz).

OUTPUT LEVEL SCALE

Output level is referenced to $+13 \mathrm{dBm}(1 \mathrm{~V})$. This reference operation involves subtracting 13 from the desired output level. After this subtraction, the most and least significant digits are exchanged. For instance, to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to -071 dBm , first subtract 13 to get -084 , and then exchange the most and least significant digits to get -480 . Thus outputting -480 , followed by the proper program code, will program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to an output level of -071 dBm . (The minus sign need not be included in the output).

MODULATION SOURGE AND MODULATION MODE

Modulation source (EXT, INT. 400 Hz , etc.) and modulation mode (AM, FM x $0.1, \mathrm{FM} \times 1.0, \mathrm{FM} \times 10, \phi \mathrm{M}$) can also be programmed. The various sources are represented by a single character and the various modes are also represented by a single character. The mode character must always be output after the source character. The AM-FM- $\phi \mathbf{M}$ Function program is output after mode.

MODULATION LEVEL

In addition to source and mode, a third modulation parameter Modulation Level, must also be programmed. This two-digit parameter represents different quantities depending on what modulation mode is selected.

If AM mode is selected, ($86632 \mathrm{~A} / \mathrm{B}, 86633 \mathrm{~A} / \mathrm{B}$) then this third parameter represents AM depth, expressed as \%. AM depth can be programmed in 1% steps from 0 to 99%.

If FM mode is selected, ($86632 \mathrm{~A} / \mathrm{B}, 86633 \mathrm{~A} / \mathrm{B}, 86635 \mathrm{~A}$) then this parameter represents peak FM deviation, expressed in kilohertz. FM mode is split into three ranges, $\mathrm{FM} \times 0.1, \mathrm{FM} \times 1.0$, and $\mathrm{FM} \times 10$ ($\mathrm{FM} \times 0.1, \mathrm{FM} \times 1.0$ only on $86633 \mathrm{~A} / \mathrm{B}$).

On FM $\times 0.1$, the actual peak deviation is 0.1 times the programmed value; on FM $\times 10$ the peak deviation is 10 times the programmed value.

The effects of the doubling system (see Table 1-1) and the mode range must be taken into account individually.

If $\phi \mathrm{M}$ mode is selected (86635A), then the Modulation Level parameter represents phase deviation in degrees. Below 1300 MHz the resolution to which phase deviation can be programmed is 2°, over a range of $0-100^{\circ}$. Above 1300 MHz the resolution to which phase deviation can be programmed is also 2°, but over a wider range of $0-200^{\circ}$. The actual phase deviation is always twice the programmed value.

The next two chapters will present examples which show in more detail how modulation is programmed.

OUTPUT STATES AFTER LOCAL \rightarrow REMOTE TRANSITION

When the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is put into the REMOTE mode, frequency will remain unchanged, the modulation section will turn off and output level will go either to the last programmed value or, if level has not yet been programmed, to -140 dBm (serial prefix 1335A and above).

OUTPUT STATES AFTER REMOTE \rightarrow LOCAL TRANSITION

When the $8660 \mathrm{~B} / \mathrm{C}$ is brought back from the REMOTE mode of operation into the LOCAL mode, all functions except frequency will return to the states specified by the instrument's front panel controls. However, frequency will remain at the last value entered in the REMOTE mode.

FIRST FREQUENCY GHANGE AFTER REMOTE \rightarrow LOCAL TRANSITION

When the $8660 \mathrm{~B} / \mathrm{C}$ is switched back into LOCAL, the CLEAR key should be pressed before entering a new frequency. This ensures that the first manual command will be accepted and executed properly.

CHAPTER 6
 $9820 \mathrm{~A} / 21 \mathrm{~A}$ CALCUL ATOR CONTROL OF THE $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$

The Hewlett－Packard Model 9820A／21A Calculator provides all the control capabilities necessary to program the 8660A／B／C Synthesized Signal Generator． It is assumed in the following examples that the user has properly connected the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to the $9820 \mathrm{~A} / 21 \mathrm{~A}$ Calculator as shown in Chapter 3，and that the proper options and accessories are installed in both the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ and the 9820A／21A as described in Chapter 2.

This chapter is written so that the reader can follow along on the calculator while reading the text．

ADDRESSING THE 8660A／B／C

To put the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ into remote，store the following lines，and press END， EXECUTE，RUN PROGRAM．The front panel 8660A／B／C REMOTE indicator should light．

Comments
日：
FMT Y3，Z：WRT $13 \vdash$
1：
CMII＂？U3＂ト $\quad \square \quad$ Enables Remote Line

The first line above（line 0 ）enables the remote line，thus allowing the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to go into remote，as soon as it is addressed to listen．The second line above（line 1）accomplishes this addressing．The characters within the quote field in line 1 are addresses and they are automatically output to the HP－IB sequentially，starting with the leftmost character and ending with the rightmost． Thus by referring to the HP－IB coding table（Table 4－1）it can be seen that the effect of this statement is to first unaddress all instruments on the HP－IB（＂？＂），then address the $9820 \mathrm{~A} / 21 \mathrm{~A}$ to talk（＂ U ＂）and finally address the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to listen（＂ 3 ＂）．

As stated in Chapter 2，the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will not go into remote until it is addressed，which means the remote light on the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will not go on until

```
CND "?U3"ト
```

is executed．To convince yourself of this，turn the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ off and then turn it back on again．This automatically puts the 8660A／B／C in LOCAL（front panel remote light off）．Now store the following program：

Comments

Press END, EXECUTE. When RUN PROGRAM is pressed, line 0 is executed, and the program halts at the STP instruction in line 1. At this point the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is still in LOCAL. When RUN PROGRAM is pressed again, line (2) is executed and the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ goes into REMOTE (front panel REMOTE light on).

If other instruments are on the bus, it will be necessary to unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ so that information may be sent to these other instruments. To unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$, key in

```
CHD"マ"ト
```

and press EXECUTE. The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is now unaddressed, and will ignore any information being transmitted to other instruments until it is once again addressed to listen.

The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ can also be unaddressed by pushing the calculator STOP key. This can lead to unexpected results, however, if the user did not intend to unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ when the STOP key was pressed.

A program executed STP statement does not unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.
When the last statement was executed, (CMD "?") the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ remained in remote. If it is desired to bring the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ back into the local mode, execute the following line:

```
FMT Y4:Z:WRT 13F
```

As soon as this line is executed, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ should return to LOCAL (front panel REMOTE light goes out).

PROGRAMMING THE 8660A/B/C WITH LITERALS ($9820 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Calculator)

Many times it is desirable to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to a fixed frequency or a fixed output level, etc. This involves programming with literals, where a literal is defined as any character within a quote field. Programming with literals is useful any time an $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s functions need be programmed to only one state during a test, or when successive states of a function are not mathematically related.

In the examples that follow, it is assumed that the remote enable statement

```
FlTT Y3, z;WET 13F
```

has already been executed. This statement need only be executed once unless a remote disable statement

```
FMT Y4:Z:GRT 13F
```

has been executed, thus putting the instrument back into LOCAL.

As a first example of how to control the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$, suppose that it is desired to program 57.34 MHz . The procedure for doing this is outlined below. The first three steps are done in the user's head and only the last step is done on the calculator. (The section on programming with variables will show how the first three steps below can also be done on the calculator.)

Programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to 57.34 MHz

1. Change the frequency to Hertz (57340000)
2. Add enough leading zeroes to get 10 significant digits (0057340000)
3. Reverse the order of the most significant and the least significant digits to get the number 0000437500 . (The leading zeroes can now be omitted).
4. Execute the line
```
CHTH "?U3","/4375
00,"ト
```

The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will now read 57.34 MHz .
It is important that the above syntax be well understood, and therefore a detailed description follows.

The ?U3 in the first quote field performs the same addressing function as outlined in the last section. However, the machine treats characters in the second quote field differently. Instead of converting these characters into addresses, the calculator converts them into program data. This program data is sent to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ one character at a time, starting with the $/$, then the 4 , etc. The following paragraph describes the purpose of each of these characters in detail.

The / clears a temporary storage register inside the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$. It must be the first character output to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ after it is put into remote. However, this temporary register is automatically cleared every time the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ receives a program code and therefore it is not necessary (although it won't hurt) to output the / more than this one time, after the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ has been placed in remote.

The digits 437500 which represent, in this case, the desired output frequency, go into the temporary storage register mentioned above. As soon as the program code [[] is received, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ changes its output frequency and then clears the temporary storage register.

Because the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is capable of storing information，and because this information is not erased until a program code is received，the following lines would also program the instrument to 57.34 MHz ．

Comments

The following examples show how to program other $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ functions． Refer to Table 4－1 to verify the program codes used．

21 MHz at -43 dBm

or

```
0:
CMD "शU3"*"1200!
    "F
1.
CHD "?U3","650C"
F
```

$9:$
CMI "оリ3","1200
$6500^{\circ}+$

Comments

These three examples show that the syn－ tax used to output literals is not unique． 650 is obtained by subtracting 13 from -43 and then reversing the order of the digits．
27% AM INT. 400 Hz
($86632 \mathrm{~A} / \mathrm{B}, 86633 \mathrm{~A} / \mathrm{B}$)

```
```

0:

```
```

0:
CMI "qU3","28年72
CMI "qU3","28年72
*"ト

```
```

*"ト

```
```

27\％AM INT． 400 Hz （ $86632 \mathrm{~A} / \mathrm{B}, 86633 \mathrm{~A} / \mathrm{B}$ ）

Comments

2 sets INT $400 \mathrm{~Hz} ; 8$ sets AM mode，$\$$ is AM－FM－ϕ M FUNCTION program code； 72 sets 27% AM depth；\％is MODULATION LEVEL program code．
2.4 kHz FM，EXT AC LEV （86632A，86633A／B）

Comments

8 sets EXT AC； 4 sets FM $\times 0.1$ mode；$\$$ is AM－FM－$\phi \mathrm{M}$ FUNCTION program code； 42 sets 2.4 kHz deviation；\％is MODULATION LEVEL program code．（For center frequency $\geq 1300 \mathrm{MHz}$ ，and for 86632 B and 86635A plug－ins，program 1.2 kHz deviation．）

Comments

42 sets 48° deviation（remember actual deviation $=2 \times$ programmed deviation）； \％is MODULATION LEVEL program code； 4 sets EXT DC，\leq sets phase modulation， \＄is AM－FM－ϕ M FUNCTION program code．

Modulation OFF

6：
CMI＂QU3＂，＂日日寺＂ト

Comments

First 0 can be any number；second 0 turns modulation off；$\$$ is AM－FM－ϕ M FUNCTION program code．

PROGRAMMING THE 8660A/B/C WITH VARIABLES (9820A/21A Calculator)

Under most circumstances, it is desirable to change the frequency, output level, and modulation parameters many times during the course of a measurement. Under such circumstances it is convenient to output the contents of variables. The present section illustrates how this is done.

The first thing that needs to be understood is that once the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is addressed to listen and the $9820 \mathrm{~A} / 21 \mathrm{~A}$ is addressed to talk with

```
CMD "2U3"F
```

it is not necessary to repeat this instruction until the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is unaddressed. In the following discussion, it will be assumed that the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ has been addressed, and that it has received a $/$, thus clearing its temporary register.

The general $9820 \mathrm{~A} / 21 \mathrm{~A}$ syntax for programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ with variables is:
0) FMT n, FXD * . 0 , " x_{1} ", FXD * . 0 , " x_{2} ", . . .

1) WRT 13.n, R1, R2, . . .
where \mathbf{n} is a format number, and can be any integer from 0 to 9; R1, R2, etc. are the variables to be output; $\mathbf{F X D} \boldsymbol{* . 0}$ is the format associated with these variables; and $\mathbf{x}_{1}, \mathbf{x}_{2}$, etc. are program codes. Line 0 must always be executed before line 1 .

Before proceeding further, a short example may be helpful:

$$
18.374 \mathrm{MHz},-92 \mathrm{dBm}
$$

6:
CMD "?U3"ト

$$
1:
$$

$$
\text { FMT } 1, F X D *{ }^{\circ}, " C
$$

$$
=F X D \%, 0, " C+F
$$

$$
2
$$

$$
4738100 \rightarrow \mathrm{R} 1+
$$

$$
3:
$$

$$
501+\mathrm{R} 2 \mathrm{t}
$$

$$
4:
$$

WRT 13,1:R1, R2F

Comments

Output the contents of R1 followed by (, the contents of R2, and \mathbf{C}.

As seen in the last example, it is still necessary to reverse the order of the digits of both center frequency and level. The following subroutine will do this rearrangement quickly, efficiently and automatically. This subroutine requires that the number to be inverted be divided by a constant. This number is 10^{9} for frequency, 10^{2} for output level, and 10^{1} for modulation level. After the number is divided by the appropriate constant, the result is placed in the C register. The inverted number is returned in the B register.

This subroutine，and most of the remaining programs in this chapter，require the use of the mathematics ROM（11221A）．

Inversion Subroutine

6：
＂IHY＂${ }^{\circ}$ ． 1 ＋月
$1:$
$\mathrm{ETO}+\mathrm{B}:(1 \mathrm{aH} \div \mathrm{A})$
IHT $\mathrm{C}+\mathrm{B} \rightarrow \mathrm{E} ; \mathrm{IF}$ 〔CC

- INT $C+10+C)=03$

EET＋

Comments

This subroutine reverses the order of the digits of a number passed to it in the C register．The result is returned in the B register．

Using this subroutine，the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ could be programmed as follows：

$$
105 \mathrm{MHz}-73 \mathrm{dBm}
$$

日：
CHD＂？प3＂ト
1：
$105000000 / 1 E 9+0$
GSE＂IHU＂F
2：
$\mathrm{B} \rightarrow \mathrm{R} 1$ ト
3：
$(-73-13) / 1 \mathrm{E} 2 \rightarrow \mathrm{C}$ ；
GSE＂INV＂ト
4：
$B \div R 2 \vdash$
$5:$
FMT 2 ，FKD＊n日＂
＂，FKD＊，Qs＂C＂F
E：
WRT 13．2．R1．R2t Output contents of R1，center frequency
7：
STP +
8：

9：
$G T 0+0 ;(18 \mathrm{H}+\mathrm{A})$
INT $\mathrm{C}+\mathrm{E}+\mathrm{B}: \mathrm{IF}(\mathrm{C}$
$-I N T C O * 10+C)=0 ;$
RET＋

Comments
Invert 105 MHz and store result in R1．
Subtract 13 from－73 dBm，invert，and
store result in R2．
Format statement．
Output contents of R1，center frequency
program code［（］，contents of R2，output
level program code（C）．
Digit inversion subroutine．

Modulation level can also be programmed with variables．
29% AM，INT 400 Hz （86632A／B，86633A／B）

6：

CMI＂？U3＂ト
1：
FHT 3；＂28里＂，FXD Modulation format statement．

2：
29／1E1＋C：GSB＂IN
《＂
$3:$
WRT $13,3, \mathrm{BF}$ Output $28 \$$ ，then contents of B ，and
4：
STP +
5：

6：
$G T 0+8 ;(1 日 A+B)$
INT $\mathrm{C}+\mathrm{B} \rightarrow \mathrm{B}:$ IF $(C \mathrm{C}$
$-I A T C!* 10+C)=0 ;$
RET ト

Comments

Programming above 1300 MHz （86603A RF Section）is no different than pro－ gramming below 1300 MHz when the 8660 C mainframe is used．However，when an 8660 A or 8660 B mainframe is used，an extra programming step is necessary to switch the doubler into the circuit，and the user must remember that the actual output frequency will be twice the programmed frequency．

2340 MHz （8660A／B）

The next three examples begin to illustrate the real power of programming with variables．All three are used to generate a frequency sweep，both linear and log．In an actual automatic test system a measurement might be made at each frequency．

1－11 MHz，Linear Sweep
101 Points $(8660 \mathrm{~A} / \mathrm{B} / \mathrm{C})$

6： CHII＂？113＂ト 1： FMT 5，FKD＊．日，＂ ＂ 2： 1E6＋R1F 3： $11 \mathrm{E} 6+\mathrm{F} 2 \mathrm{~F}$ 4： （R2－R1）／100＋R3ト $5:$ ＂SWEEF＂：R1／1E9力C ＂TSE＂INV＂ト E： WRT 13．5． BH 7： IF R2＞R1：R1＋R3ヶR 1＂GTO＂SUEEF＂ト 8： STP \vdash $9:$ 10： GTO＋D（1日月ナ日） IHT $\mathrm{C}+\mathrm{B} \rightarrow \mathrm{B}: I F$（CO - INT（ $) * 10+\mathrm{C}=03$ BET＋

Comments

Center frequency format statement．
Initialize sweep end points．
Initialize sweep increment．
Invert start frequency．
Output new frequency．
End of sweep？No－change frequency．
＂Invert＂subroutine．

The next program does the same thing as the last program，but uses the fre－ quency step of the $8660 \mathrm{~B} / \mathrm{C}$ mainframe to change the frequency．This method pro－ duces a faster sweep．

1－11 MHz，Linear Sweep
101 Points（8660B／C）
Comments

Q：
CMD＂？U3＂ト
1：
FMT $6 y \mathrm{FXD} * . \mathrm{Gy}$＂ — Center frequency format statement．
$2:$
FHT 子ッ＂H＂ト
3：
$1 \mathrm{E} 6 \div \mathrm{F} 1$ ト
4：
$11 E 6 \rightarrow \mathrm{R2F}$ Initialize sweep end point and sweep in－
$5:$
（R2－R1）1907R3ト
6：
$\mathrm{E} 1 / 1 \mathrm{E} 9 \rightarrow \mathrm{C}: 5 \mathrm{GE}$＂IH \quad Invert start frequency．
4＂ト
7：
WRT $13,6, \mathrm{BH}$
8：
R3－1E9 + C：GSE＂IH Invert sweep increment frequency．
9：
FMT FXJ＊日，Zu Output increment frequency．
WRT 13 ，BH
10：
＂SWEEP＂IF R2＞R1 End of sweep？No－output frequency STEP \uparrow
？R1＋R 3－R1：URT 15
－ア！GTO＋ロト
11：
STP +
12：
＂INY＂；1 $1 \rightarrow$ A；日 \rightarrow BF＂Invert＂subroutine
13：
GT0＋$\because(10 A \rightarrow B)$
INT $\mathrm{C}+\mathrm{B} \rightarrow \mathrm{B}$ ；IF（ C C
－INT C $) * 1 \bar{\theta} \rightarrow \mathrm{C}=0$
RET +

Two things should be noted in the last example．First，in line 9，no format number is necessary because the FMT and WRT statements appear on the same line．Second，note that the increment frequency is output only once（line 9）．Once the $8660 \mathrm{~B} / \mathrm{C}$ has stored this increment，its frequency can be changed merely by outputting the STEP \uparrow program（A）．This is done with the WRT 13.7 statement in line 10.

The final frequency sweep example shows how to generate a logarithmic sweep.

1-11 MHz Logarithmic Sweep,
101 Points $(8660 \mathrm{~A} / \mathrm{B} / \mathrm{C})$

Comments

- Center Frequency format statement.
- Initialize sweep endpoints.
- Generate logarithmic multiplier.
- Invert start frequency.
- End of sweep? No-change frequency.
- "Invert subroutine."

The final example of this section shows how to use the User Definable Function ROM (11222A) to reduce programming of most of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s functions to a single, simple easy to use statement.

This function works with any $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ provided that either a $86632 \mathrm{~A} / \mathrm{B}$ or $86633 \mathrm{~A} / \mathrm{B}$ is installed (unless modulation is not programmed, in which case any modulation section plug-in can be used). The user must still remember to program half the desired FM deviation for those plug-ins that require it (see Table 1-1). Also, at frequencies greater than 1300 MHz , half the desired frequency must be programmed when using an 8660 A or 8660 B mainframe.

To use this User Definable Function（UDF）load the following program into any one of the UDF keys：

8660A／B／C UDF

日：
＂RFSET＂＂FMT Y3yZ
？URT 13：UMI＂？US
＂ 1
1：
IF 130日SP1；FMT
G＂：WRT 1S：GTO 3H
2：
FMT＂I＂；WRT 13ト
3：
IF PB＝0； $\mathrm{O} \rightarrow \mathrm{PG}:$
GTO＂MOI＂ト
4：
IF $\mathrm{F} 8=1 ; 8+\mathrm{P} 6 ; \mathrm{F} 5$
$10 \rightarrow$ Fア：GTO 7ト
5：
FS＊TNT（－INT
$\operatorname{LOG}(1+\mathrm{P} 5) \rightarrow \mathrm{PG}) \rightarrow \mathrm{F}$
7）
$6:$
$2+(2+F 6) \div F 6 t \quad-$
7：
GSB＂INV＂ト
E：
＂WOD＂：FMT FRD＊
日，FXD＊．日ッ＂丰＂，
FKI＊＂日，＂\％＂；WRT
$13, \mathrm{~F} 4, \mathrm{PE}, \mathrm{FBF}$
$9:$
IHT（F1＊1E6）／1ES
\rightarrow F7引GSB＂IHU＂ト
10：
Pg\＆P6t Store inverted frequency in temporary
11：
INT（P2－13）／1E2＋
F7゙GSE＂INY＂ト
12：
FMT FXII＊，日，＂（＂）
FKD＊日，＂C＂；WRT
$13, \mathrm{FE}, \mathrm{PBF}$
$13:$
GT0 16ト
14：
＂INV＂：． $1+\mathrm{P} 9$ ： $\mathrm{G}+\mathrm{PE}$
－
15：
GT0＋ 0 （10PG＋Pg）
INT P7＋PG\＆FS；IF
（ $(\mathrm{P} 7$－INT P （ ）$\% 10+$
F 7 ）$=$ 日 RET ト

Comments

－Put $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ into remote，address it．
－If frequency is greater than 1300 MHz ， throw frequency X2 switch．
－Throw frequency X1 switch．
－Turn off modulation？Yes－go to＂MOD．＂
－Is AM wanted？Yes－go to 7.
－No，AM is not wanted－compute FM mode range．

Scale and invert FM deviation．
－Output modulation parameters．
－Scale and invert frequency． register（P6）．
－Scale \＆invert output level．
－Output both frequency \＆output level．
－＂Invert＂subroutine．

Now that this program is loaded, all that is necessary to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s previously mentioned functions is to execute the following syntax (either from the keyboard or from a program):

CLL RFSET $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
where:
$\mathrm{x}_{1}=$ Frequency in MHz
$\mathrm{x}_{2}=$ Output level in dBm
$\mathrm{x}_{3}=0$ for no modulation (MODULATION OFF)
$=1$ for AM
$=2$ for FM
$\mathrm{x}_{4}=$ Source of modulation
$1=$ INT 1 kHz
$2=$ INT 400 Hz
$4=$ EXT DC
$8=$ EXT AC
$9=$ EXT AC UNLEVELED (86633A/B)
$\mathrm{x}_{5}=\%$ modulation, if AM;
Peak deviation, in kHz , if FM
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ can be variables (R1, R7, A, C, etc.) or constants (7, 354, 96, etc.).
As can be seen, this program does all the necessary conversions such as changing from MHz to Hz , referencing output level to +13 dBm , choosing the range for FM and, of course, exchanging the most and least significant digits of all numerical data output to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$. However, the resolution and ranges available still depend on the individual plug-ins, and it is up to the user of this UDF to make sure that these ranges are not exceeded.

CHAPTER 7
 9830A CALCULATOR CONTROL OF THE $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$

The Hewlett-Packard Model 9830A Calculator provides all the control capabilities necessary to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Synthesized Signal Generator. It is assumed in the following examples that the user has properly connected the 8660A/B/C to the 9830A Calculator as shown in Chapter 3, and that the proper options and accessories are installed in both the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ and the 9830 A as described in Chapter 2.

This chapter is written so that the reader can follow along on the calculator while reading the text.

ADDRESSING THE 8680A/B/C

To put the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ into remote, store the following lines, then press RUN, EXECUTE. The front panel 8660A/B/C REMOTE indicator should light.

```
10 REM LINES 20-30 ENABLE THE REMOTE LIHE.
20 FORMAT E
30 OUTFUT (13,20)768
40 REM LINE 50 ADDRESSES THE 9830月 TO THLK,
41 REM THE B6E0A/B/C TO LISTEN.
50 CMI "?U3"
6 0 ~ E H D ~
```

As stated in the program, lines 20 and 30 enable the remote line, thus allowing the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to go into remote, as soon as it is addressed to listen. Line 50 accomplishes this addressing. The characters within the quote field in this line are addresses and they are automatically output to the HP - IB sequentially, starting with the leftmost character and ending with the rightmost. Thus by referring to the HP - IB coding table (Table 4-1) it can be seen that the effect of this statement is to first unaddress all instruments on the HP - IB ("?"), then address the 9830A to talk (" U "), and finally address the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to listen (" 3 ").

As stated in Chapter 3, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will not go into remote until it is addressed, which means the remote light on the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will not go on until

```
CMD "शリ3"
```

is executed. To convince yourself of this, turn the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ off and then turn it back on again. This automatically puts the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ in LOCAL (front panel
remote light off). Now store the following program:

```
10 REM EHFBLE THE REMOTE LINE.
20 FOFMAT B
30 OUTPUT (13,20)768
40 DISF "LINE 50"
50 STOP
EQ REM ADDRESS THE 9830H TO TALK?
61 REN THE 866日A/B/C TO LISTEN.
70 CHD "?U3"
80 END
```

When the program is run, lines $10-40$ are executed, and the program halts at the STOP instruction in line 50 . At this point the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is still in LOCAL. When the keys CONTINUE, EXECUTE are pressed, lines $60-80$ are executed and the 8660A/B/C goes into REMOTE (front panel REMOTE light on).

If other instruments are on the bus, it will be necessary to unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ so that information may be sent to these other instruments. To unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ key in

```
CHD "?"
```

and press EXECUTE. The 8660A/B/C is now unaddressed, and will ignore any information being transmitted to other instruments until it is once again addressed to listen.

The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ can also be unaddressed by pushing the calculator STOP key. This can lead to unexpected results, however, if the user did not intend to unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ when the STOP key was pressed.

A program executed STOP statement does not unaddress the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.
When the last statement was executed, (CMD "?") the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ remained in remote. This is the way things are supposed to be. If it is desired to bring the 8660A/B/C back into the local mode, execute the following lines:

```
10 REM THESE LINES FUT THE B660日/B/C
11 REM BACK INTO LOCAL.
20 FORMAT E
30 OUTPUT (13,20)1024
40 ENII
```

As soon as these lines are executed, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ should return to LOCAL (front panel REMOTE light goes out).

There is an equivalent, single line, format which can be used to enable and disable the remote line:

```
10 REM THIS SINGLE LINE fl_SO ENGELES
11 REM THE REMOTE LINE.
20 OUTPUT (13,*)WBYTEPGS
30 EHD
```

```
10 REM THIS SINGLE LINE flgO FUTS THE
11 REIf BG6日A/B/C BHCK INTO LOCAL.
20 OUTPUT (13,*)WEYTE1024
30 ENI
```


PROGRAMMING THE 8660A/B/C WITH LITERALS (9830A Calculator)

Many times it is desirable to program the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to a fixed frequency or a fixed output level, etc. This involves programming with literals, where a literal is defined as any character within a quote field. Programming with literals is useful any time an $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s functions need be programmed to only one state during a test, or when successive states of a function are not mathematically related.

In the examples that follow, it is assumed that the remote enable statement

```
OUTPUT (13,*)MBYTETEE
```

has already been executed. This statement need only be executed once unless a remote disable statement

```
OUTPUT (13,*)WEYTE1024
```

has been executed, thus putting the instrument back into LOCAL.
As a first example of how to control the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$, suppose that it is desired to program 57.34 MHz . The procedure for doing this is outlined below. The first three steps are done in the user's head and only the last step is done on the calculator. The section on programming with variables will show how the first three steps below can also be done on the calculator.

Programming the 8660A/B/C to $\mathbf{5 7 . 3 4} \mathbf{~ M H z}$

1. Change the frequency to Hertz (57340000)
2. Add enough leading zeroes to get 10 significant digits (0057340000)
3. Reverse the order of the most significant and the least significant digits to get the number 0000437500 . (The leading zeroes can now be omitted).
4. Execute the line
ctin "qu3","/437500("

The $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ will now read 57.34 MHz .

It is important that the above syntax be well understood, and therefore a detailed description follows.

The ?U3 in the first quote field performs the same addressing function as outlined in the last section. However, the machine treats characters in the second quote field differently. Instead of converting these characters into addresses, the calculator converts them into program data. This program data is sent to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ one character at a time, starting with the $/$, then the 4 , etc. The following paragraph describes the purpose of each of these characters in detail.

The / clears a temporary storage register inside the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$. It must be the first character output to the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ after it is put into remote. However, this temporary register is automatically cleared every time the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ receives a program code and therefore it is not necessary (although it won't hurt) to output the / more than this one time, after the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ has been placed in remote.

The digits 437500 which represent, in this case, the desired output frequency go into the temporary storage register mentioned above. As soon as the program code [[] is received, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ changes its output frequency and then clears the temporary storage register.

Because the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is capable of storing information, and because this information is not erased until a program code is received, the following lines will also program the instrument to 57.34 MHz .

```
10 REM THIS IS AN ALTERNATE WAY OF
11 REM FROGRAMMING THE 8660月/E/C TO 57.34 MHZ.
20 CMD "?U3","43"
30 CMD "?113","75"
40 CMD "?U3","00"
56 CMD "?U3","("
6 0 \text { EHD}
```

The following examples show how to program other $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ functions. Refer to Table 4-1 to verify the program codes used.

```
10 REM THIS IS A PROGRAM TO OUTPUT 21 MHZ, -043 DEN.
20 CMD "?U3","1200(","2U3","6500"
30 END
10 REM THIS PROGRAM FLSO OUTPUTS 21 MHZ, -043 IEM.
20 CMI "?U3","12006"
30 CHD "?U3","E500"
40 END
19 REM THLS FROGRFI FLSO OUTPUTS 21 MHZ, -043 IBM.
20 CHD "?U3","120066500"
30 END
```


Comments

These preceding three examples show that the syntax used to output constants is not unique. Note that 650 is obtained by subtracting 13 from -43 and then reversing the order of the digits.

```
10 REM THIS IS A PROGRAM TO OUTFUT 27% AM.
11 REM INT 400 HZ (SG632A/By.66633A B)
20 CHIL "OU3","28$72%"
30 EHII
```


Comments

2 sets INT $400 \mathrm{~Hz} ; 8$ sets AM mode, $\$$ is AM-FM- ϕ M FUNCTION program code; 72 sets 27% AM depth; \% is MODULATION LEVEL program code.

```
10 REM THIS IS A PROGRAM TO OUTFUT 2.4 KHZ FM,
11 REM EKT FC LEVELED (86632A,86633A/E)
20 CMI "?U3","84$42%"
3 0 ~ E N I I ~
```


Comments

8 sets EXT AC; 4 sets FM $\times 0.1$ mode; $\$$ is AM-FM- ϕ M FUNCTION program code; 42 sets 2.4 kHz deviation; \% is MODULATION LEVEL program code. (For center frequency $\geq 1300 \mathrm{MHz}$, and for 86632 B and 86635 A plug-ins, program 1.2 kHz deviation).

```
1O REM THIS IS A PROGRAM TO OUTPUT 38 KHZ FM,
```

11 REM INT 1 KHZ , FM CAL (86632A)
20 CMI "?U3", "83\%12鈤"
30 EHI

Comments

83 sets 38 kHz deviation；\％is MODULATION LEVEL program code； 1 sets INT $1 \mathrm{kHz} ; 2$ sets $\mathrm{FM} \times 1.0 ; \$$ is AM－FM－$\phi \mathrm{M}$ FUNCTION program code，\＆is FM CAL program code．（For center frequencies $\geq 1300 \mathrm{MHz}$ and for 86632 B plug－in，program 19 kHz deviation）．

```
10 REM THIS IS A PROGRAM TO OUTPUT 48 IEGREES
11 REM PHASE DEVIATIOH: EXT DC (86635A)
20 CMI "2U3","42%4<事"
30 EHD
```


Comments

42 sets 48° deviation（remember actual deviation $=2 \times$ programmed deviation）； $\%$ is MODULATION LEVEL program code； 4 sets EXT DC，\leq sets phase modulation， \＄is AM－FM－ϕ M FUNCTION program code．

```
10 REM THIS IS A PROGRAM TO
11 REM TURN THE MODULATION SECTION OFF,
20 CHI "?U3","口0事"
36 END
```


Comments

First $\mathbf{0}$ can be any number；second $\mathbf{0}$ turns modulation off；$\$$ is $\mathrm{AM}-\mathrm{FM}-\phi \mathrm{M}$ FUNCTION program code．

PROGRAMMING THE B660A／B／C WITH VARIABLES（9830A Calculator）

Under most circumstances，it is desirable to change the frequency，output level， and modulation parameters many times during the course of a measurement．Under such circumstances it is convenient to output the contents of variables．The present section illustrates how this is done．

The first thing that needs to be understood is that once the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is addressed to listen and the 9830A is addressed to talk with

```
CMII "?U3"
```

it is not necessary to repeat this instruction until the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is unaddressed． In the following discussion，it will be assumed that the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ has been addressed，and that it has received a $/$ ，thus clearing its temporary register．

The general 9830A syntax for programming the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ with variables is：

```
| FORMAT F100日. 日, "X1", F1000.0y "Y2", . . .
    OUTPUT (13sN) G, B,C,....
```

where \mathbf{N} is a line number；A，B，C，etc．are variables to be output；F1000．0 is the format associated with these variables；and X1，X2，etc．are program codes．

Before proceeding further，a short example may be helpful．

```
10 REM THIS IS A PROGRAM TO OUTPUT 18,374 MHZ, -92 DEM.
    REM
30 REM ADDRESS THE 9830A TO TALK.
4G REM THE 8GG日月, B/C TO LISTEH.
50 CMI "?US"
60 FORTAT F10日0.B,"<",F1000.0y,"C"
70 F=4738100
80 L=501
90 REM OUTPUT THE CONTENTS OF F1. FOLLOMED B' <,
100 REM THE COHTENTS OF L, FHD C.
110 OUTPUT <13,G0)F,L
120 END
```

As seen in the last example，it is still necessary to reverse the order of the digits of both center frequency and level．The following function will do this rearrangement quickly，efficiently and automatically．This function requires that the number to be inverted be divided by a constant．This number is 10^{9} for fre－ quency， 10^{2} for output level，and 10^{1} for modulation level．This function can either
be defined in the mainline memory, or it can be stored in a Special Function key.

```
10 DEF FNI(X)
15 REM THIS IS THE DIGIT INVERSIOH SUEROUTINE
20 H=1
30 Y=AES%
40. Z=0
50 Z=Z+W*INTY
60 Y=10*(Y-INTY)
70 W=10*N
80 IF Y#O THEN 50
9 0 ~ R E T U R N ~ Z ~
```

Using this subroutine, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ could be programmed as follows:

```
10 REM THIS IS A PROGRAM TO QUTPUT 105 MHZ, -73 IBM.
20 F1=105000000/1E+09
30L= (-73-13)/1E+02
40 FORMAT F1000.0,"(",F1000.0, "C"
5 0 ~ R E M ~ I H V E R T ~ T H E ~ O R D E R ~ O F ~ T H E ~ D I G I T S * ,
60 REM FND OUTFUT FREQUENCY FHI OUTPUT LEVEL
70 REM FOLLOWEI BY THEIR RESPECTIVE FROGRAM CODES.
80 OUTFUT (13,40)FNI(F1), FNI(L)
9 0 ~ E H D ~
```

Modulation level can also be programmed with variables.

```
10 REM THIS IS A PROGRAM TO OUTPUT 29% AM,
20 REFIN INT 400 HZ (36632A/E,86633A/B)
30 CMI "%\3"
40 FORMAT "28条",F1060.0, "%"
50 M=29/1E+011
60 REM DUTPUT 28s, THEN INVERT M,
70 REM DUTFUT INERTEII AM %. THEN OUTPUT %
80 OUTFIUT (13,40)FHI (M)
90 END
```

Programming above 1300 MHz (86603A RF Section) is no different than programming below 1300 MHz when the 8660 C mainframe is used. However, when an 8660 A or 8660 B mainframe is used, an extra programming step is necessary to switch the doubler into the circuit, and the user must remember that the actual output frequency will be twice the programmed frequency.

```
10 REM THIS IS A PROGRAM TO OUTPUT
20 REM 2340 MHZ (8660月/E - 86603%).
30 CMI "?U3"
4 0 ~ R E M ~ D I V I D E ~ 2 3 4 0 ~ M H Z ~ B Y ~ 2 . ~
50 F1=2.34E+09/2/1E+09
60 REM THE G IH THE FORMAT STATEMENT
70 REM THROWS THE DOUELER SWITCH.
80 FOR4AT F10日G.0,"(", "G"
90 OUTPUT (13,80)FHI(F1)
100 END
```

The next three examples illustrate the real power of programming with variables. All three are used to generate a frequency sweep, both linear and log. In an actual automatic test system, some sort of measurement would be made at each frequency.

```
10 REM THIS ROUTINE SHEEPS 1-11 MHZ, IN 101 STEPS.
20 CMI "?U3"
30 FORMAT F1000.0,"<"
4 0 ~ R E M ~ S E T ~ T H E ~ E N D P O I N T S ~ O F ~ T H E ~ S H E E P .
50 F1=1E+06
60 F2=1.1E+07
7 0 ~ R E M ~ S E T ~ T H E ~ S W E E F ~ I N C R E M E N T .
80 F3=(F2-F1)/100
90 REM CHANGE FREQUENCY.
100 OUTFUT (13,30)FNI(F1/1E+09)
110 F1=F1+F3
120 REM TEST FOR THE END OF THE SWEEP.
130 IF F1 <= F2 THEN 100
140 END
```

The next program does the same thing as the last program, but uses the frequency step of the $8660 \mathrm{~B} / \mathrm{C}$ mainframe to change the frequency. This method produces a faster sweep.

```
10 REM THIS ROUTINE SNEEPS 1-11 MHZ,
20 REM USING THE S660E/C STEP FUHCTION.
30 CHI "?U3"
40 FORMAT F1000.0y"("
5 0 ~ F O R M A T ~ F 1 O Q 0 . 0 , ~ " A " ~
60 REM SET THE ENDPOINTS OF THE SMEEP.
70 F1=1E+06
80 F2=1.1E+07
90 REM SET THE SNEEP IHCREMENT.
100 F3= (F2-F1) / 100
11日 REM OUTPUT THE STARTING FREQUENC'.
120 REM FOLLOWED EY FREOUENCY PROGRAM CODE - S.
130 DUTPUT (13,40)FNI (F1 < E E D9)
140 REM OUTFUT THE FREDUENCY STEP SIZE,
150 REM FOLLOWED EY PROGRAM CODE "A"
166 OUTFUT (13,50)FNI(F3<1E+69)
170 F1=F1+F3
180 REM DUTPUT THE FREQUENCY STEP FROGRAM CODE "R".
190 OUTFUT (13,*)"A"
20Q REM TEST FOR THE END OF THE SHEEP.
210 IF F1+F3<F2 THEN 170
220 EHD
```

The final example shows how to generate a logarithmic sweep.

```
10 REM THIS ROUTINE SWEEPS 1-11 MHZ: LOGGRITHMICALLY.
20 CNT "?U3"
30 FORMAT F1000.B,"<"
35 REM SET THE ENIFOINTS OF THE SNEEF
40 F1=1E+06
50 F2=1.1E+07
60 EEM GENERATE THE LOGARITHMIC MULTIFLIER.
70 F3=<F2,F1) t(1 100)
80 REM CHHHGE FREQUEHCY.
90 DUTPUT (13,30)FHI (INTF1/1E+09)
100 F1=F1*F3
11日 REM TEST FOR THE EHD OF THE SHEEP.
120 IF F1 <= F2 THEN 90
130 END
```


CHAPTER 8 TIMING CONSIDERATIONS

All instruments have programming response times, where programming response time is defined here as the time delay between a programming input and the desired output. If such delays are not taken into account, it is possible that a measurement may be taken with a very fast programming response time instrument before the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is providing the desired stimulus.

When the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is programmed via the HP - IB and jumper J1 is installed on the HP - IB Output Assembly Board (see appropriate Operating and Service Manual), it is not necessary to take the programming response time of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ into consideration. The reason for this is that with J1 in place, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ inhibits both the operation of the HP-IB and the operation of the calculator until the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is providing an output which is reasonably close to its programmed state.

Thus, in most instances no consideration need be given to programming response times. However, certain situations do exist in which it is of paramount importance to take these delays into account. These situations generally fall into one of the two following classifications:

1. $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ inhibit feature defeated
2. Inhibit period too short to achieve desired resolution.

These two classifications are discussed below.

INHIBIT FEATURE DEFEATED

With jumper J1 in place, the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ automatically inhibits both data transfer on the HP - IB and also operation of the calculator for a period of:
a. 5 msec after a frequency program code is received
b. 5 msec after modulation program code is received (except FM CAL)
c. 50 msec after an output level program code is received
d. 5 seconds after an FM CAL program code is received
e. Whatever time is required for the $86633 \mathrm{~A} / \mathrm{B}$ modulation section plug-in to acquire phase lock.

If it is desired to increase the speed of an HP - IB system, this inhibit feature can be defeated by removing jumper J1. Defeating this feature allows the calculator to either engage in computation or program other instruments on the bus at the same time that the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is settling to its desired output state. However, the burden of making sure that a measurement is not made before the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ has indeed settled to its programmed state now rests with the person writing the calculator program.

INHIBIT PERIOD TOO SHORT

A few instances exist where the inhibit periods, described in the last section, are not long enough to allow the output of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ to settle to the desired resolution. In such instances, an additional delay must be provided in the calculator program. The following table should provide the information necessary to calculate these additional delays. The times given are the total settling times. Therefore to find the additional software delays needed to achieve the desired result, subtract the inhibit time given in the previous section.

Table 8-1. Programming Response Times

Frequency Settling Time	
Within 100 Hz of final value	$<5 \mathrm{msec} *$
Within 5 Hz of final value	$<100 \mathrm{msec}$
Output Level Settling Time	
Within 1 dB of final value	$<50 \mathrm{msec} *$
Modulation Settling Time (86632A/B, 86635A)	
Switching from OFF to:	
INT. 400 Hz or 1 kHz	5 seconds
EXT. AC	5 seconds
EXT. DC	$2.3 \mathrm{msec} *$
Modulation level (with $\pm 5 \%$ of setting)	$2.3 \mathrm{msec} *$
FM CAL	5 seconds
Modulation Settling Times (86633A/B)	
Switching from OFF to:	
INT. 400 Hz or 1 kHz (AM only)	5 seconds
EXT. AC LEV (AM only)	5 seconds
EXT. AC UNLEV (AM only)	5 seconds
EXT. DC (AM only)	$2.3 \mathrm{msec}{ }^{*}$
Changing \% AM depth (within $\pm 5 \%$ of settling)	2-3 msec*
Changing FM deviation to new value on same mode range (within $\pm 5 \%$ of setting)	$3.4 \mathrm{msec}^{*}$
Changing FM deviation to new value on different range (within $\pm 5 \%$ of setting)	1.5 seconds
Switching from AM or OFF to:	
EXT AC LEV (FM only)	Time required for
EXT AC UNLEV (FM only)	86633A/B to
INT 400 Hz or 1 kHz (FM only)	achieve phase lock*

In some applications it is desirable to avoid the long modulation section turn-on times listed in Table 8-1. These turn-on times can be avoided by leaving the instrument in the desired modulation mode at all times, and programming zero modulation level when no modulation is desired. However, when FM mode is programmed with the $86632 \mathrm{~A} / \mathrm{B}$ or 86635 A modulation section plug-in installed, the carrier will no longer be locked to the reference oscillator, resulting in loss of phase coherence and frequency stability.

Each of the following programs provides control of one of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s major functions.

Each program is written as a subroutine and is called with a GSB statement. Before calling any of these subroutines, store the appropriate parameters in the indicated registers. Subroutine "INV" (see Chapter 6) is used in most of these subroutines.

Function Controlled: Passing Parameter:	Frequency Frequency, in MHz, is passed via the X register.
Registers Used:	A,B,C,X
Compatibility:	Works with all mainframe- RF plug-in combinations, except $8660 \mathrm{~A} / \mathrm{B}-86603 \mathrm{~A}$
above 1300 MHz.	

Function Controlled: Output Level
Passing Parameter: Output level in dBm, is passed via the X register.
Registers Used: $\quad \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}$
Compatibility: Compatible with all mainframe-plug-in combinations.

Functions Controlled:	AM source, AM mode, \% AM depth
Passing Parameters:	Source is passed via X : $1-\mathrm{INT} 1 \mathrm{kHz}$ 2-INT 400 Hz 4-EXT DC 8-EXT AC 9-EXT AC (unleveled) \% AM depth is passed via Y, AM mode is programmed automatically
Registers Used:	A, B, C, X, Y
Compatibility:	Compatible with $86632 \mathrm{~A} / \mathrm{B}$ 86633A/B modulation section plug-ins

Functions Controlled： | FM source，FM mode， |
| :--- |
| FM deviation |

Passing Parameters：FM source－（see subroutine ＂AM＂）； FM deviation is passed via Y ； FM mode is programmed automatically
Registers Used：$\quad A, B, C, X, Y$ Compatibility：Compatible with 86632A， $86633 \mathrm{~A} / \mathrm{B}$ below 1300 MHz carrier frequency

Functions Controlled：	$\phi \mathrm{M}$ source，$\phi \mathrm{M}$ mode， $\phi \mathrm{M}$ deviation Passing Parameters： M source（same as subroutine AM＂）； $\phi \mathrm{M}$ deviation，in degrees，is passed via Y
Registers Used：	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}$
Compatibility：	Compatible with 86635 A modulations section plug－in

```
9:
"FM";CMD "%U3";
FMT FXIJ %, B,FXD
*,0. %':MRT 13,%
,2T(1-INT LOGG SI
+Y)+C(+2)+
1:
Y}+\textrm{THT}\textrm{C}->\textrm{CF
2:
GSE "INy"1
3:
FMGT FKD **,
4:
RET F
```

Functions Controlled：Same as subroutine＂FM＂
Passing Parameters：Same as subroutine＂FM＂ Registers Affected：$\quad A, B, C, X, Y$ Compatibility：

Compatible with 86632 B ， 86635 A at all frequencies． Compatible with all programmable modulation plug－ins above 1300 MHz ．

```
9:
```

9:
"FM1";CMD "2U3";
"FM1";CMD "2U3";
FMT FXD *,Q,FXD
FMT FXD *,Q,FXD
+0, "\&";MRT 13,%
+0, "\&";MRT 13,%
+.0,"車";|NRT 13,8
+.0,"車";|NRT 13,8
+Y) +C)+23H
+Y) +C)+23H
+!:
+!:
::}2+TH+C->C
::}2+TH+C->C
2:
2:
2:
2:
FMT F:涪二.g,"%";
FMT F:涪二.g,"%";
WMT FRO
WMT FRO
URT
URT
RET +

```
RET +
```


APPENDIX B

Output Subroutines (9830 A

Each of the following programs provides control of one of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$'s major functions.

Each program is written as a subroutine and is called with a GOSUB statement. Before calling any of these subroutines, store the appropriate parameters in the indicated variables. Definable function FNI (see Chapter 7) is used in most of these subroutines.

Functions Controlled:	Frequency
Passing Parameter:	Frequency, in MHz, is passed via variable F1
Compatibility:	Works with all mainframeRF plug-in combinations, except 8660A/B-86603A above 1300 MHz .
Functions Controlled:	Frequency
Passing Parameter:	Frequency, in MHz is passed via variable F1
Compatibility:	Works with all mainframeRF plug-in combinations, except $8660 \mathrm{C}-86603 \mathrm{~A}$ above 1300 MHz .

```
1100 FORMAT F1000.0,"("
110 CMD "913
120 F2=1NT(F1+1E+06) 1E+199
1130 IF F1 >= 1300 THEN 1160
1140 OUTPUT (13,1100)"1",FNIF2
150 GOTO 1170
1160 OUTPUT (13,1100)"G",FHI (F2/2)
1160 ONTYUR
```

Function Controlled:	Output Level Passing Parameters: Output level, in dBm, is passed via variable LI.
Compatibility:	Compatible with all mainframe- plug-in combinations

[^0]$\left.\begin{array}{ll}\text { Function Controlled: } & \begin{array}{l}\text { AM source, AM mode, } \\ \text { \% AM depth }\end{array} \\ \text { Passing Parameters: } & \text { Source is passed via variable S: } \\ & 1-\text { INT } 1 \mathrm{kHz} \\ 2-I N T ~ 400 ~ H z \\ 4-E X T ~ D C ~\end{array}\right\}$

```
1300 FORMAT F1000.0, "8%",F1000.0,"%"
1310 CMD "?リ3
1329 OUTPUT ( }13,1390)S,FNI(M/10
1330 RETURN
```

Functions Controlled:	FM source, FM mode, FM deviation
Passing Parameters:	Source-(see AM subroutine); FM deviation is passed via variable $M ;$ FM mode is programmed automatically.
Compatibility:	Compatible with 86632 A, carrier frequency.


```
    1400 FORMAT F1
1410 CMD "OU3"
1420 11=-1NTLGT (1+H)
1436 OUTPUT
```

Functions Controlled:	FM source, FM mode, FM deviation
Passing Parameters:	Same as previous FM subroutine
Compatibility:	Compatible with $86632 \mathrm{~B}, 86635 \mathrm{~A}$ at all frequencies. Compatible with all program- mable modulation plug-ins above 1300 MHz.

```
1500 FORMAT F1000.0,F1g00.0,"子",F1000.0,"%"
1510 OHD "?43"
1520 UMD-NNT CTC!+M
ls29 11=-INTLGT(1+M)
1530 OUTPUT
```

Functions Controlled:	$\phi \mathrm{M}$ source, $\phi \mathrm{M}$ mode, $\phi \mathrm{M}$ deviation	Functions Controlled: Passing Parameters:	Modulation Off None
Passing Parameters:	$\phi \mathrm{M}$ source (same as AM subroutine); ϕ M deviation, in degrees, is passed via variable M.	Compatibility:	Compatible with $86632 \mathrm{~A} / \mathrm{B}$, 86633A/B, 86635A modulation section plug-ins.
Compatibility:	Compatible with 86635A modulation section plug-in.		

[^1]```
1700 CMD "?U3
1710 OUTPUT (13,+)"00&
1720 RETUPN
```

HEWLETT PACKARD


[^0]:    1200 FORMAT F1000.0, "C"
    1210 CMD
    1220 CMD CUU"
    1220 PETUR

[^1]:    1600 FORMAT F1000.0, "< $\xi^{\prime}$, F1000.0, " $\%$
    1610 CMD "?U3
    1620 OUTPUT ( 13,1600$) S$, FHI (M-20)
    1630 RETURH

