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Modal analysis is defined as the
study of the dynamic characteris-
tics of a mechanical structure.
This application note emphasizes
experimental modal techniques,
specifically the method known
as frequency response function
testing.  Other areas are treated
in a general sense to introduce
their elementary concepts and
relationships to one another.

Although modal techniques
are mathematical in nature, the
discussion is inclined toward
practical application.  Theory is
presented as needed to enhance
the logical development of ideas.
The reader will gain a sound
physical understanding of modal
analysis and be able to carry
out an effective modal survey
with confidence.

Chapter 1 provides a brief
overview of structural dynamics
theory.  Chapter 2 and 3 which
is the bulk of the note – describes
the measurement process for
acquiring frequency response
data.  Chapter 4 describes the
parameter estimation methods
for extracting modal properties.
Chapter 5 provides an overview
of analytical techniques of struc-
tural analysis and their relation
to experimental modal testing.

Preface
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response function are examined
to understand the trends and their
usefulness in the measurement
process. Finally, these concepts
are extended into MDOF systems,
since this is the type of behavior
most physical structures exhibit.
Also, useful concepts associated
with damping mechanisms and
linear system assumptions
are discussed.

Introduction

A basic understanding of struc-
tural dynamics is necessary
for successful modal testing.
Specifically, it is important to
have a good grasp of the relation-
ships between frequency response
functions and their individual
modal parameters illustrated in
Figure 1.1. This understanding is
of value in both the measurement
and analysis phases of the survey.
Knowing the various forms and
trends of frequency response
functions will lead to more accu-
racy during the measurement
phase.  During the analysis phase,
knowing how equations relate
to frequency responses leads to
more accurate estimation of
modal parameters.

The basic equations and their
various forms will be presented
conceptually to give insight into
the relationships between the
dynamic characteristics of the
structure and the corresponding
frequency response function mea-
surements. Although practical
systems are multiple degree
of freedom (MDOF) and have
some degree of nonlinearity,
they can generally be represented
as a superposition of single
degree of freedom (SDOF) linear
models and will be developed in
this manner.

First, the basics of an SDOF
linear dynamic system are pre-
sented to gain insight into the
single mode concepts that are
the basis of some parameter
estimation techniques. Second,
the presentation and properties
of various forms of the frequency

Chapter 1

Structural Dynamics Background

Figure 1.1

Phases of a

modal test

Test Structure

Frequency Response Measurements

Modal Parameters

Curve Fit Representation

Η (ω) = Σij
n

r = 1

φ    φir jr
mr ( r - + j2 r)ω ω ζωω2 2

ω
ζ
φ

— Frequency
— Damping

{ } — Mode Shape



5

Structural Dynamics of a
Single Degree of Freedom
(SDOF) System

Although most physical structures
are continuous, their behavior
can usually be represented by
a discrete parameter model as
illustrated in Figure 1.2. The ide-
alized elements are called mass,
spring, damper and excitation.
The first three elements describe
the physical system. Energy is
stored by the system in the mass
and the spring in the form of
kinetic and potential energy,
respectively. Energy enters the
system through excitation and
is dissipated through damping.

The idealized elements of the
physical system can be described
by the equation of motion shown
in Figure 1.3. This equation re-
lates the effects of the mass, stiff-
ness and damping in a way that
leads to the calculation of natural
frequency and damping factor of
the system. This computation is
often facilitated by the use of the
definitions shown in Figure 1.3
that lead directly to the natural
frequency and damping factor.

The natural frequency, ω, is
in units of radians per second
(rad/s). The typical units dis-
played on a digital signal ana-
lyzer, however, are in Hertz (Hz).
The damping factor can also be
represented as a percent of criti-
cal damping – the damping level
at which the system experiences
no oscillation. This is the more
common understanding of modal
damping. Although there are three
distinct damping cases, only
the underdamped case (ζ< 1) is
important for structural
dynamics applications.

Figure 1.2
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When there is no excitation,
the roots of the equation are
as shown in Figure 1.4. Each
root has two parts: the real part
or decay rate, which defines
damping in the system and the
imaginary part, or oscillatory
rate, which defines the damped
natural frequency, ωd. This free
vibration response is illustrated
in Figure 1.5.

When excitation is applied,
the equation of motion leads to
the frequency response of the
system. The frequency response is
a complex quantity and contains
both real and imaginary parts
(rectangular coordinates). It can
be presented in polar coordinates
as magnitude and phase, as well.

Presentation and
Characteristics of
Frequency Response
Functions

Because it is a complex quantity,
the frequency response function
cannot be fully displayed on a
single two-dimensional plot. It
can, however, be presented in
several formats, each of which
has its own uses. Although the
response variable for the previous
discussion was displacement, it
could also be velocity or accelera-
tion. Acceleration is currently the
accepted method of measuring
modal response.

One method of presenting the
data is to plot the polar coordi-
nates, magnitude and phase
versus frequency as illustrated
in Figure 1.6.  At resonance, when
ω = ωn, the magnitude is a maxi-
mum and is limited only by the
amount of damping in the system.
The phase ranges from 0° to 180°
and the response lags the input by
90° at resonance.

Figure 1.6
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Another method of presenting
the data is to plot the rectangular
coordinates, the real part and the
imaginary part versus frequency.
For a proportionally damped sys-
tem, the imaginary part is maxi-
mum at resonance and the real
part is 0, as shown in Figure 1.7.

A third method of presenting
the frequency response is to plot
the real part versus the imaginary
part. This is often called a Nyquist
plot or a vector response plot.
This display emphasizes the
area of frequency response at
resonance and traces out a
circle, as shown in Figure 1.8.

By plotting the magnitude in
decibels vs logarithmic (log)
frequency, it is possible to cover
a wider frequency range and
conveniently display the range
of amplitude. This type of plot,
often known as a Bode plot,
also has some useful parameter
characteristics which are de-
scribed in the following plots.

When ω << ωn the frequency
response is approximately
equal to the asymptote shown
in Figure 1.9.  This asymptote is
called the stiffness line and has
a slope of 0, 1 or 2 for displace-
ment, velocity and acceleration
responses, respectively. When
ω >> ωn the frequency response
is approximately equal to the as-
ymptote also shown in Figure 1.9.
This asymptote is called the mass
line and has a slope of -2, -1 or 0
for displacement velocity or
acceleration responses,
respectively.

Figure 1.7
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The various forms of frequency
response function based on the
type of response variable are
also defined from a mechanical
engineering viewpoint.  They are
somewhat intuitive and do not
necessarily correspond to electri-
cal analogies.  These forms are
summarized in Table 1.1.

Figure 1.9
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Structural Dynamics
for a Multiple Degree of
Freedom (MDOF) System

The extension of SDOF concepts
to a more general MDOF system,
with n degrees of freedom, is
a straightforward process. The
physical system is simply com-
prised of an interconnection
of idealized SDOF models, as
illustrated in Figure 1.10, and
is described by the matrix equa-
tions of motion as illustrated in
Figure 1.11.

The solution of the equation
with no excitation again leads
to the modal parameters (roots
of the equation) of the system.
For the MDOF case, however, a
unique displacement vector called
the mode shape exists for each
distinct frequency and damping
as illustrated in Figure 1.11.
The free vibration response is
illustrated in Figure 1.12.

The equations of motion for the
forced vibration case also lead to
frequency response of the system.
It can be written as a weighted
summation of SDOF systems
shown in Figure 1.13.

The weighting, often called the
modal participation factor, is a
function of excitation and mode
shape coefficients at the input
and output degrees of freedom.

Figure 1.10
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The participation factor identifies
the amount each mode contrib-
utes to the total response at a
particular point. An example
with 3 degrees of freedom
showing the individual modal
contributions is shown in
Figure 1.14.

The frequency response of an
MDOF system can be presented
in the same forms as the SDOF
case. There are other definitional
forms and properties of frequency
response functions, such as a
driving point measurement, that
are presented in the next chapter.
These are related to specific
locations of frequency response
measurements and are introduced
when appropriate.

Figure 1.13
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measured to characterize the sys-
tem when using a linear model.

The equivalent viscous damping
coefficient is obtained from
energy considerations as illus-
trated in the hysteresis loop in
Figure 1.15.  E is the energy

dissipated per cycle of vibration,
c

eq
 is the equivalent viscous damp-

ing coefficient and X is the ampli-
tude of vibration. Note that the
criteria for equivalence are equal
energy distribution per cycle and
the same relative amplitude.

Figure 1.15

Viscous damping

energy dissipation

Damping Mechanism
and Damping Model

Damping exists in all vibratory
systems whenever there is energy
dissipation.  This is true for me-
chanical structures even though
most are inherently lightly
damped.  For free vibration, the
loss of energy from damping in
the system results in the decay
of the amplitude of motion.  In
forced vibration, loss of energy is
balanced by the energy supplied
by excitation.  In either situation,
the effect of damping is to remove
energy from the system.

In previous mathematical formu-
lations the damping force was
called viscous, since it was
proportional to velocity.  How-
ever, this does not imply that
the physical damping mechanism
is viscous in nature.  It is simply
a modeling method and it is im-
portant to note that the physical
damping mechanism and the
mathematical model of that
mechanism are two distinctly
different concepts.

Most structures exhibit one or
more forms of damping mecha-
nisms, such as coulomb or struc-
tural, which result from looseness
of joints, internal strain and other
complex causes.  However, these
mechanisms can be modeled by
an equivalent viscous damping
component.  It can be shown
that only the viscous component
actually accounts for energy loss
from the system and the remain-
ing portion of the damping is due
to nonlinearities that do not cause
energy dissipation.  Therefore,
only the viscous term needs to be
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Frequency Response
Function and Transfer
Function Relationship

The transfer function is a math-
ematical model defining the
input-output relationship of a
physical system.  Figure 1.16
shows a block diagram of a single
input-output system.  System
response (output) is caused by
system excitation (input).  The
casual relationship is loosely
defined as shown in Figure 1.17.
Mathematically, the transfer
function is defined as the Laplace
transform of the output divided
by the Laplace transform of
the input.

The frequency response function
is defined in a similar manner and
is related to the transfer function.
Mathematically, the frequency
response function is defined as
the Fourier transform of the out-
put divided by the Fourier trans-
form of the input.  These terms
are often used interchangeably
and are occasionally a source of
confusion.

Figure 1.18

S-plane

representation

iω

ωn
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This relationship can be further
explained by the modal test pro-
cess.  The measurements taken
during a modal test are frequency
response function measurements.
The parameter estimation rou-
tines are, in general, curve fits
in the Laplace domain and result
in the transfer functions.  The
curve fit simply infers the loca-
tion of system poles in the s-plane
from the frequency response func-
tions as illustrated in Figure 1.18.
The frequency response is simply
the transfer function measured
along the jω axis as illustrated
in Figure 1.19.
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System Assumptions

The structural dynamics back-
ground theory and the modal
parameter estimation theory are
based on two major assumptions:

Figure 1.19
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Introduction

This chapter investigates the
current instrumentation and
techniques available for acquiring
frequency response measure-
ments.  The discussion begins
with the use of a dynamic signal
analyzer and associated peripher-
als for making these measure-
ments.  The type of modal testing
known as the frequency response
function method, which measures
the input excitation and output re-
sponse simultaneously, as shown
in the block diagram in Figure 2.1,
is examined.  The focus is on the
use of one input force, a tech-
nique commonly known as single-
point excitation, illustrated in
Figure 2.2.  By understanding this
technique, it is easy to expand to
the multiple input technique.

With a dynamic signal analyzer,
which is a Fourier transform-
based instrument, many types of
excitation sources can be imple-
mented to measure a structure’s
frequency response function.
In fact, virtually any physically
realizable signal can be input or
measured.  The selection and
implementation of the more
common and useful types of
signals for modal testing are
discussed.

Chapter 2

Frequency Response Measurements

Figure 2.1

System block

diagram
Excitation ResponseH( )ω

X( )ω Y( )ω

Figure 2.2

Structure

under test

Structure

Force Transducer

Shaker

Transducer selection and
mounting methods for measuring
these signals along with system
calibration methods, are also
included.  Techniques for improv-
ing the quality and accuracy of
measurements are then explored.
These include processes such as
averaging, windowing and zoom-
ing, all of which reduce measure-
ment errors.  Finally, a section on
measurement interpretation is in-
cluded to aid in understanding the
complete measurement process.
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General Test System
Configurations

The basic test set-up required
for making frequency response
measurements depends on a
few major factors.  These include
the type of structure to be tested
and the level of results desired.
Other factors, including the sup-
port fixture and the excitation
mechanism, also affect the
amount of hardware needed to
perform the test.  Figure 2.3
shows a diagram of a basic
test system configuration.

The heart of the test system is the
controller, or computer, which is
the operator’s communication
link to the analyzer.   It can be
configured with various levels
of memory, displays and data
storage.  The modal analysis
software usually resides here, as
well as any additional analysis
capabilities such as structural
modification and forced response.

The analyzer provides the data
acquisition and signal processing
operations.  It can be configured
with several input channels,
for force and response measure-
ments, and with one or more
excitation sources for driving
shakers.  Measurement functions
such as windowing, averaging and
Fast Fourier Transforms (FFT)
computation are usually pro-
cessed within the analyzer.

Figure 2.3

General test

configuration

Structure

Transducers

Exciter

Controller

Analyzer

For making measurements on
simple structures, the exciter
mechanism can be as basic as
an instrumented hammer.  This
mechanism requires a minimum
amount of hardware.  An electro-
dynamic shaker may be needed
for exciting more complicated
structures.  This shaker system
requires a signal source, a power
amplifier and an attachment
device.  The signal source, as
mentioned earlier, may be a
component of the analyzer.

Transducers, along with a power
supply for signal conditioning, are
used to measure the desired force
and responses.  The piezoelectric
types, which measure force and
acceleration, are the most widely
used for modal testing.  The
power supply for signal condition-
ing may be voltage or charge
mode and is sometimes provided
as a component of the analyzer,
so care should be taken in setting
up and matching this part of the
test system.
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Supporting The Structure

The first step in setting up a
structure for frequency response
measurements is to consider the
fixturing mechanism necessary
to obtain the desired constraints
(boundary conditions).  This is
a key step in the process as it
affects the overall structural
characteristics, particularly for
subsequent analyses such as
structural modification, finite
element correlation and
substructure coupling.

Analytically, boundary conditions
can be specified in a completely
free or completely constrained
sense.  In testing practice, how-
ever, it is generally not possible
to fully achieve these conditions.
The free condition means that the
structure is, in effect, floating in
space with no attachments to
ground and exhibits rigid body
behavior at zero frequency.  The
airplane shown in Figure 2.4a is
an example of this free condition.
Physically, this is not realizable,
so the structure must be sup-
ported in some manner.  The
constrained condition implies
that the motion, (displacements/
rotations) is set to zero.  How-
ever, in reality most structures
exhibit some degree of flexibility
at the grounded connections.  The
satellite dish in Figure 2.4b is an
example of this condition.

In order to approximate the
free system, the structure can
be suspended from very soft
elastic cords or placed on a very
soft cushion.  By doing this, the
structure will be constrained to a
degree and the rigid body modes
will no longer have zero fre-
quency.  However, if a sufficiently
soft support system is used, the
rigid body frequencies will be

Figure 2.4a

Example of

free support

situation

Figure 2.4b

Example of

constrained

support

situation

Constrained
Boundary

much lower than the frequencies
of the flexible modes and thus
have negligible effect.  The rule
of thumb for free supports is that
the highest rigid body mode
frequency must be less than one
tenth that of the first flexible
mode.  If this criterion is met,
rigid body modes will have
negligible effect on flexible
modes.  Figure 2.5 shows a
typical frequency response
measurement of this type with
nonzero rigid body modes.

The implementation of a con-
strained system is much more
difficult to achieve in a test envi-
ronment.  To begin with, the base
to which the structure is attached
will tend to have some motion of
its own.  Therefore, it is not going
to be purely grounded.  Also, the
attachment points will have some
degree of flexibility due to the
bolted, riveted or welded connec-
tions.  One possible remedy for
these problems is to measure the

Free
Boundary



17

frequency response of the base
at the attachment points over
the frequency range of interest.
Then, verify that this response
is significantly lower than the
corresponding response of the
structure, in which case it will
have a negligible effect.  How-
ever, the frequency response may
not be measurable, but can still
influence the test results.

There is not a best practical or
appropriate method for support-
ing a structure for frequency
response testing. Each situation
has its own characteristics.  From
a practical standpoint, it would
not be feasible to support a large
factory machine weighing several
tons in a free test state.  On the
other hand, there may be no
convenient way to ground a very
small, lightweight device for the
constrained test state.  A situation
could occur, with satellite for ex-
ample, where the results of both
tests are desired.  The free test is
required to analyze the satellite’s
operating environment in space.
However, the constrained test is
also needed to assess the launch

Figure 2.5
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environment attached to the boost
vehicle.  Another reason for
choosing the appropriate
boundary conditions is for finite
element model correlation or
substructure coupling analyses.
At any rate, it is certainly impor-
tant during this phase of the test
to ascertain all the conditions in
which the results may be used.
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Periodic* Transient
in analyzer window in analyzer window

Sine True Pseudo Random Fast Impact Burst Burst
steady random random sine sine random
state

Minimze leakage No No Yes Yes Yes Yes Yes Yes

Signal to noise Very Fair Fair Fair High Low High Fair
high

RMS to peak ratio High Fair Fair Fair High Low High Fair

Test measurement time Very Good Very Fair Fair Very Very Very
long good good good good

Controlled frequency content Yes Yes* Yes* Yes* Yes* No Yes* Yes*

Controlled amplitude content Yes No Yes* No Yes* No Yes* No

Removes distortion No Yes No Yes No No No Yes

Characterize nonlinearity Yes No No No Yes No Yes No

*  Requires additional equipment or special hardware

Exciting the Structure

The next step in the measurement
process involves selecting an
excitation function (e.g., random
noise) along with an excitation
system (e.g., a shaker) that best
suits the application.  The choice
of excitation can make the differ-
ence between a good measure-
ment and a poor one.  Excitation
selection should be approached
from both the type of function
desired and the type of excitation
system available because they are
interrelated.  The excitation func-
tion is the mathematical signal
used for the input.  The excitation
system is the physical mechanism
used to prove the signal.  Gener-
ally, the choice of the excitation
function dictates the choice of the
excitation system, a true random
or burst random function requires

a shaker system for implementa-
tion.  In general, the reverse is
also true.  Choosing a hammer
for the excitation system dictates
an impulsive type excitation
function.

Excitation functions fall into four
general categories: steady-state,
random, periodic and transient.
There are several papers that
go into great detail examining the
applications of the most common
excitation functions.  Table 2.1
summarizes the basic characteris-
tics of the ones that are most
useful for modal testing.  True
random, burst random and im-
pulse types are considered in the
context of this note since they are
the most widely implemented.
The best choice of excitation
function depends on several fac-
tors: available signal processing

equipment, characteristics of the
structure, general measurement
considerations and, of course, the
excitation system.

A full function dynamic signal
analyzer will have a signal source
with a sufficient number of func-
tions for exciting the structure.
With lower quality analyzers,
it may be necessary to obtain a
signal source as a separate part of
the signal processing equipment.
These sources often provide fixed
sine and true random functions as
signals; however, these may not
be acceptable in applications
where high levels of accuracy are
desired.  The types of functions
available have a significant influ-
ence on measurement quality.

Table 2.1

Excitation

functions
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The dynamics of the structure
are also important in choosing the
excitation function.  The level of
nonlinearities can be measured
and characterized effectively
with sine sweeps or chirps, but a
random function may be needed
to estimate the best linearized
model of a nonlinear system.
The amount of damping and the
density of the modes within the
structure can also dictate the use
of specific excitation functions.  If
modes are closely coupled and/or
lightly damped, an excitation
function that can be implemented
in a leakage-free manner (burst
random for example) is usually
the most appropriate.

Excitation mechanisms fall into
four categories: shaker, impactor,
step relaxation and self-operating.
Step relaxation involves
preloading the structure with
a measured force through a

cable then releasing the cable
and measuring the transients.
Self-operating involves exciting
the structure through an actual
operating load.  This input cannot
be measured in many cases, thus
limiting its usefulness.  Shakers
and impactors are the most com-
mon and are discussed in more
detail in the following sections.
Another method of excitation
mechanism classification is to
divide them into attached and
nonattached devices.  A shaker
is an attached device, while an
impactor is not, (although it does
make contact for a short period
of time).

Shaker Testing

The most useful shakers for
modal testing are the electromag-
netic shown in Fig. 2.6 (often
called electrodynamic) and the
electro hydraulic (or, hydraulic)
types.  With the electromagnetic
shaker, (the more common of the
two), force is generated by an
alternating current that drives a
magnetic coil.  The maximum fre-
quency limit varies from approxi-
mately 5 kHz to 20 kHz depending
on the size; the smaller shakers
having the higher operating range.
The maximum force rating is
also a function of the size of the
shaker and varies from approxi-
mately 2 lbf to 1000 lbf; the
smaller the shaker, the lower
the force rating.

With hydraulic shakers, force
is generated through the use of
hydraulics, which can provide
much higher force levels – some
up to several thousand pounds.
The maximum frequency range
is much lower though – about
1 kHz and below.  An advantage
of the hydraulic shaker is its
ability to apply a large static
preload to the structure.  This is
useful for massive structures such
as grinding machines that operate
under relatively high preloads
which may alter their structural
characteristics.
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There are several potential
problem areas to consider when
using a shaker system for excita-
tion.  To begin with, the shaker
is physically mounted to the
structure via the force transducer,
thus creating the possibility of
altering the dynamics of the struc-
ture.  With lightweight structures,
the mechanism used to mount
the load cell may add appreciable
mass to the structure.  This
causes the force measured by
the load cell to be greater than
the force actually applied to the
structure.  Figure 2.7 describes
how this mass loading alters the
input force.  Since the extra mass
is between the load cell and the
structure the load cell senses
this extra mass as part of the
structure.

Since the frequency response is a
single input function, the shaker
should transmit only one compo-
nent of force in line with the main
axis of the load cell.  In practical
situations, when a structure is
displaced along a linear axis it
also tends to rotate about the
other two axes.  To minimize the
problem of forces being applied
in other directions, the shaker
should be connected to the load
cell through a slender rod, called
a stinger, to allow the structure
to move freely in the other direc-
tions.  This rod, shown in Figure
2.8, has a strong axial stiffness,
but weak bending and shear
stiffnesses.  In effect, it acts like
a truss member, carrying only
axial loads but no moments or
shear loads.
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The method of supporting the
shaker is another factor that can
affect the force imparted to the
structure.  The main body of the
shaker must be isolated from the
structure to prevent any reaction
forces from being transmitted
through the base of the shaker
back to the structure.  This can
be accomplished by mounting
the shaker on a solid floor and
suspending the structure from
above.  The shaker could also
be supported on a mechanically-
isolated foundation.  Another
method is to suspend the shaker,
in which case an inertial mass
usually needs to be attached
to the shaker body in order to
generate a measurable force,
particularly at lower frequencies.
Figure 2.9 illustrates the different
types of shaker set-ups.

Another potential problem
associated with electromagnetic
shakers is the impedance mis-
match that can exist between
the structure and the shaker coil.
The electrical impedance of the
shaker varies with the amplitude
of motion of the coil.  At a reso-
nance with a small effective mass,
very little force is required to
produce a response.  This can
result in a drop in the force
spectrum in the vicinity of the
resonance, causing the force
measurement to be susceptible
to noise.  Figure 2.10 illustrates
an example of this phenomenon.
The problem can usually be
corrected by using shakers with
different size coils or driving the
shaker with a constant-current
type amplifier.  The shaker could
also be moved to a point with a
larger effective mass.
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Impact Testing

Another common excitation
mechanism in modal testing is
an impact device.  Although it is
a relatively simple technique to
implement it’s difficult to obtain
consistent results.  The conve-
nience of this technique is attrac-
tive because it requires very little
hardware and provides shorter
measurement times.  The method
of applying the impulse, shown in
Figure 2.11, includes a hammer,
an electric gun or a suspended
mass.  The hammer, the most
common of these, is used in the
following discussion.  However,
this information also applies to
the other types of impact devices.

Since the force is an impulse,
the amplitude level of the energy
applied to the structure is a func-
tion of the mass and the velocity
of the hammer.  This is due to the
concept of linear momentum,
which is defined as mass times
velocity.  The linear impulse is
equal to the incremental change
in the linear momentum.  It is
difficult though to control the
velocity of the hammer, so the
force level is usually controlled
by varying the mass.  Impact
hammers are available in weights
varying from a few ounces to
several pounds.  Also, mass can
be added to or removed from
most hammers, making them
useful for testing objects of
varying sizes and weights.

The frequency content of the
energy applied to the structure is
a function of the stiffness of the
contacting surfaces and, to a
lesser extent, the mass of the
hammer.  The stiffness of the con-
tacting surfaces affects the shape
of the force pulse, which in turn
determines the frequency content.
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It is not feasible to change
the stiffness of the test object,
therefore the frequency content is
controlled by varying the stiffness
of the hammer tip.  The harder
the tip, the shorter the pulse
duration and thus the higher the
frequency content.  Figure 2.12
illustrates this effect on the force
spectrum.  The rule of thumb is to
choose a tip so that the amplitude
of the force spectrum is no more
than 10 dB to 20 dB down at the
maximum frequency of interest
as shown in Figure 2.13.  A disad-
vantage to note here is that the
force spectrum of an impact
excitation cannot be band-limited
at lower frequencies when mak-
ing zoom measurements, so the
lower out-of-band modes will still
be excited.

Impact testing has two potential
signal processing problems
associated with it.  The first –
noise – can be present in either
the force or response signal as a
result of a long time record.  The
second – leakage – can be present
in the response signal as a result
of a short time record.  Compen-
sation for both these problems
can be accomplished with
windowing techniques.

Since the force pulse is usually
very short relative to the length of
the time record, the portion of the
signal after the pulse is noise and
can be eliminated without affect-
ing the pulse itself.  The window
designed to accomplish this,
called a force window, is shown
in Figure 2.14.  The small amount
of oscillation that occurs at the
end of the pulse is actually part
of the pulse.  It is a result of
signal processing and should
not be truncated.
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The response signal is an expo-
nential decaying function and
may decay out before or after the
end of the measurement.  If the
structure is heavily damped, the
response may decay out before
the end of the time record.  In this
case, the response window can be
used to eliminate the remaining
noise in the time record.  If the
structure is lightly damped, the
response may continue beyond
the end of the time record.  In this
case, it must be artificially forced
to decay out to minimize leakage.
The window designed to accom-
plish either result, called the ex-
ponential window, is shown in
Figure 2.15.  The rule of thumb
for setting the time constant, (the
time required for the amplitude to
be reduced by a factor of 1/e), is
about one-fourth the time record
length, T.  The result of this is
shown in Figure 2.15.

Unlike the force window, the
exponential window can alter
the resulting frequency response
because it has the effect of adding
artificial damping to the system.
The added damping coefficient
can usually be backed out of the
measurement after signal process-
ing, but numerical problems may
arise with lightly damped struc-
tures.  This can happen when the
added damping from the exponen-
tial window is significantly more
than the true damping in the
structure.  A better measurement
procedure in this case would be
to zoom, thus utilizing a longer
time record in order to capture
the entire response, instead
of relying on the exponential
window.

Figure 2.15
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Transduction

Now that an excitation system
has been set up to force the struc-
ture into motion, the transducers
for sensing force and motion need
to be selected. Although there are
various types of transducers, the
piezoelectric type is the most
widely used for modal testing. It
has wide frequency and dynamic
ranges, good linearity and is rela-
tively durable. The piezoelectric
transducer is an electromechani-
cal sensor that generates an elec-
trical output when subjected to
vibration. This is accomplished
with a crystal element that
creates an electrical charge
when mechanically strained.

The mechanism of the force trans-
ducer, called a load cell, functions
in a fairly simple manner. When
the crystal element is strained, ei-
ther by tension or compression, it
generates a charge proportional
to the applied force. In this case,
the applied force is from the
shaker. However, due to mount-
ing methods discussed earlier,
this is not necessarily the force
transmitted to the structure.

The mechanism of the response
transducer, called an accelerom-
eter, functions in a similar man-
ner. When the accelerometer
vibrates, an internal mass in the
assembly applies a force to the
crystal element which is propor-
tional to the acceleration. This
relationship is simply Newton’s
Law: force equals mass times
acceleration.

The properties to consider in
selecting a load cell include both
the type of force sensor and its
performance characteristics. The
type of force sensing for which
load cells are designed include
compression, tension, impact or
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some combination thereof. Most
shaker tests require at least a
compression and tension type. A
hammer test, for example, would
require an impact transducer.

Some of the operating specifica-
tions to consider are sensitivity,
resonant frequency, temperature
range and shock rating.  Sensitiv-
ity is measured in terms of volt-
age/force with units of mV/1b
or mV/N.  Analyzers have a range
of input voltage settings; there-
fore, sensitivity should be chosen
along with a power supply
amplification level to generate
a measurable voltage.

The resonant frequency of a load
cell is simply a function of its
physical mass and stiffness char-
acteristics.  The frequency range
of the test should fall within the
linear range below the resonant
peak of the frequency response of
the load cell, as shown in Figure
2.16.  The rule of thumb for shock
rating is that the maximum vibra-
tion level expected during the test
should not exceed one third the
shock rating.

The load cell should be mounted
to the structure with a threaded
stud for best results as shown in
Figure 2.17.   If this is not fea-
sible, then an alternative method
of first fixing a spacer to the
structure with some type of
adhesive (such as dental cement)
and then stud mounting the load
cell to this spacer will usually
suffice for low force levels.

The properties to consider in
selecting an accelerometer are
very similar to those of the load
cell, although they are related to
acceleration rather than force.
The type of response is limited to
acceleration as the term implies,
since displacement and velocity

Figure 2.18
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Figure 2.19
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transducers are not available in
the piezoelectric type.  However,
if displacement or velocity
responses are desired, the accel-
eration response can be artifi-
cially integrated once or twice
to give velocity and displacement
responses, respectively.

In general, the optimum acceler-
ometer has high sensitivity, wide
frequency range and small mass.
Trade-offs are usually made since
high sensitivity usually dictates a
larger mass for all but the most
expensive accelerometers.  The
sensitivity, measure in mV/G,
and the shock rating should be
selected in the same manner as
with the load cell.

Although the resonant frequency
of the accelerometer (freely
suspended) is function of its
mass and stiffness characteris-
tics, the actual natural frequency
(when mounted) is generally
dictated by the stiffness of the
mounting method used. The effect
of various mounting methods is
shown in Figure 2.18.  The rule
of thumb is to set the maximum
frequency of the test at no more
than one-tenth the mounted natu-
ral frequency of the accelerom-
eter.  This is within the linear

range of the mounted frequency
response of the accelerometer.

Another important consideration
is the effect of mass loading from
the accelerometer.  This occurs
as a result of the mass of the
accelerometer being a significant
fraction of the effective mass of
a particular mode.  A simple
procedure to determine if this
loading is significant can be
done as follows:

If the two measurements differ
significantly, as illustrated in
Figure 2.19, then mass loading is
a problem and an accelerometer
with less mass should be used.
On very small structures, it may
be necessary to measure the
response with a non-contacting
transducer, such as an acoustical
or optical sensor, in order to
eliminate any mass loading.

•Measure a typical frequency re-
sponse function of the test object
using the desired accelerometer.

•Mount another accelerometer
(in addition to the first) with the
same mass at the same point and
repeat the measurement.

•Compare the two measurements
and look for frequency shifts and
amplitude changes.
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Measurement
Interpretation

Having discussed the mechanics
of setting up a modal test, it is
appropriate at this point to make
some trial measurements and
examine their trends before
proceeding with data collection.
Taking the time to investigate
preliminaries of the test, such
as exciter or response locations,
various types of excitation func-
tions and different signal process-
ing parameters will lead to higher
quality measurements.  This sec-
tion includes preliminary checks
such as adequate signal levels,
minimum leakage measurements
and linearity and reciprocity
checks.  The concept and trends
of the driving point measurement
and the combinations of measure-
ments that constitute a complete
modal survey are discussed.

After the structure has been
supported and instrumented for
the test, the time domain signals
should be examined before mak-
ing measurements.  The input
range settings on the analyzer
should be set at no more than two
times the maximum signal level
as shown in Figure 2.20.  Often
called half-ranging, this takes
advantage of the dynamic range
of the analog-to-digital converter
without underranging or
overranging the signals.

The effect resulting from under-
ranging a signal, where the
response input level is severely
low relative to the analyzer set-
ting, is illustrated in Figure 2.21.
Notice the apparent noise be-
tween the peaks in the frequency
response and the resulting
poor coherence function.  In
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Figure 2.22, the response is
severely overloading the analyzer
input section and is being clipped.
This results in poor frequency
response and, consequently,
poor coherence since the actual
response is not being measured
correctly.

It is also advisable to verify that
the signals are indeed the type
expected, (e.g., random noise).
With a random signal, it is advis-
able to measure the histogram to
verify that it is not contaminated
with other signal components,

i.e., it has a Gaussian distribution
as shown in Figure 2.23.  This can
be visually checked as illustrated
with the transient signals in
Figure 2.24.
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Measurement Averaging

In order to reduce the statistical
variance of a measurement with a
random excitation function (such
as random noise) and also reduce
the effects of nonlinearities, it is
necessary to employ an averaging
process.  By averaging several
time records together, statistical
reliability can be increased and
random noise associated with
nonlinearities can be reduced.
One method to gain insight into
the variance of a measurement is

Chapter 3

Improving Measurement Accuracy

to observe the Nyquist display
of the frequency response.  The
circle appears very distorted for a
measurement with few averages,
but begins to smooth out with
more and more averages.  This
process can be seen in Figure 3.1.
With each data record acquired,
the frequency spectrum has a
different magnitude and phase
distribution. As these spectra are
averaged, the nonlinear terms
tend to cancel, thus resulting in
the best linear estimate.
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Windowing Time Data

There is a property of the Fast
Fourier transform (FFT) that
affects the energy distribution in
the frequency spectrum.  It is the
result of the physical limitation
of measuring a finite length time
record along with the periodicity
assumption required of the time
record by the FFT.  This does not
present a problem when the sig-
nal is exactly periodic in the time
record or when a transient signal
is completely captured within
the time record.  However, in the
case of true random excitation
or in the transient case when the
entire response is not captured,
a phenomenon called leakage
results.  This has the effect of
smearing or leaking energy into
adjacent frequency lines of the
spectrum, thus distorting it.
Figure 3.2 illustrates an example
of the effects of severe leakage
problems with true random
excitation.  The effect is to
underestimate the amplitude
and overestimate the damping
factor.

One of the most common tech-
niques for reducing the effects of
leakage with a non-periodic signal
is to artificially force the signal to
0 at the beginning and end of the
time record to make it appear
periodic to the analyzer.  This is
accomplished by multiplying the
time record by a mathematical
curve, known as a window func-
tion, before processing the FFT.
Another measurement is taken
with a Hann window applied to
the true random excitation signal,
shown in Figure 3.3.  This mea-
surement is more accurate, but
notice that the coherence is still
less than unity at the resonance.

Figure 3.2

Frequency

response with

true random

signal and

no windows

Figure 3.3

Frequency

response with

burst random

signal

Sec 799mFxd Y 0.0

-50.0
m

Real

12.5
m

/Div

50.0
m

FILT TIME2

FREQ RESP 50 Avg  50% Ovlp  Unif
40.0

dB

-40.0

Fxd Y 1.1k Hz 2.1k

COHERENCE 50 Avg  50% Ovlp  Unif
1.1

Mag

0.0

Fxd Y 1.1k Hz 2.1k

v

True Random Noise

50%Ovlp

FREQ RESP 50 Avg  50% Ovlp  Hann
40.0

dB

-40.0

Fxd Y 1.1k Hz 2.1k

COHERENCE 50 Avg  50% Ovlp  Hann
1.1

Mag

0.0

Fxd Y 1.1k Hz 2.1k



32

The window does not eliminate
leakage completely and it also
distorts the measurement as a
result of eliminating some data.
A better measurement technique
is to use an excitation that is
periodic within the time record
such as burst random, in order to
eliminate the leakage problem as
illustrated in Figure 3.4.

Increasing Measurement
Resolution

Another measurement capability
that is often needed, particularly
for lightly damped structures, is
to obtain more frequency resolu-
tion in the vicinity of resonance
peaks.  It may not be possible in
a baseband measurement to
extract valid modal parameters
with inadequate information.
Normally, the Fourier transform
is calculated over a frequency
range from 0 to some maximum
frequency.  Zoom processing is
a technique in which the lower
and upper frequency limits are
independently selectable over
fixed ranges within the analyzer.
The capability to zoom allows
closely spaced modes to be more
accurately identified by concen-
trating the measurement points
over a narrower band.  The result
of this increased measurement
accuracy is shown in Figure 3.5.
Another result is that distortion
due to leakage is reduced,
because the smearing of energy
is now within a narrower band-
width, but not eliminated.  An-
other related process associated
with zooming is the ability to
band-limit the excitation to
concentrate the available energy
within the given frequency
range of the test.
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Figure 3.5
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Complete Survey

As frequency response functions
are being acquired and stored
for subsequent modal parameter
estimation, an adequate set of
measurements must be collected
in order to arrive at a complete
set of’ modal parameters.  This
section describes the number
and type of measurements that
constitute complete modal sur-
vey.  Definitions and concepts,
such as driving point measure-
ment and a row or column of the
frequency response matrix are
discussed.  Optimal shaker and
accelerometer locations are
also included.

A complete, although redundant,
set of frequency response mea-
surements would form a square
matrix of size N, where the row
corresponds to response points
and the columns correspond to
excitation points, as illustrated
in Figure 3.6.  It can be shown,
however, that any particular row
or column contains sufficient
information to compute the com-
plete set of frequencies, damping,
and mode shapes.  In other words,
if the excitation is at point 3, and
the response is measured at all
the points, including point 3, then
column of the frequency response
matrix will be measured.  This
situation would be the result of a
shaker test. On the other hand, if
an accelerometer is attached to
point 7, and a hammer is used to
excite the structure at all points,
including point 7, then row 7 on
the matrix will be measured.
This would be the result of an
impact test.

The measurement where the
response point and direction are
the same as the excitation point
and direction is called a driving

Figure 3.6
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be extracted from a set of
measurements that does not
contain a driving point.

Recall from Chapter 1, Structural
Dynamics Background, that the
response of a MDOF system is
simply the weighted sum of a
number of SDOF systems. The
characteristics of the driving
point measurement can be easily
explained and presented as a
consequence of this property.
Figure 3.8 shows a typical driving
point measurement displayed in
rectangular and polar coordi-
nates. As seen in the imaginary
part of the rectangular coordi-
nates, all of the resonant peaks
lie in the same direction. In other
words, they are in phase with
each other. This characteristic
becomes more intuitive when
illustrated with the beam modes
in Figure 3.9. The response point
moves in the same direction as
the excitation point at all the
modes, since it is measured at
the same physical location as
the excitation.

By observing the trends of this
measurement in polar coordinates
in Figure 3.9, a further under-
standing of its characteristics can
be gained.  When the magnitude
is displayed in log format (dB),
anti-resonances occur between
every resonance throughout the
frequency range.  The individual
SDOF systems sum to 0 at the
frequencies where the mass and
stiffness lines of adjacent modes
intersect since all the modes are
in phase with each other.  This
results in the near 0 magnitude of
an anti-resonance.  Also notice
the phase lead as the magnitude
passes through an anti-resonance
and the opposite phase lag as
the magnitude passes through a
resonance.  These trends of the
driving point measurement should

Figure 3.8
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be observed and monitored
throughout the measurement
process as a check for maintain-
ing a consistent set of data.

The remaining measurements,
where the response coordinates
are different from the excitation
coordinates, are called cross-
point measurements.  Figure 3.10
illustrates a typical cross-point
measurement.  All the modes
are not necessarily in phase
with each other, as seen in the
imaginary display.  Since the
response points are not at the
same location as the excitation
point, the response can move
either in phase or out of phase
with the excitation.  This motion,
which defines the mode shape,
is a function of the measurement
location, and will vary from mea-
surement to measurement.  In the
dB display, if any two adjacent
modes are in phase at a particular
point, then an anti-resonance will
exist between them.  If any two
adjacent modes are out of phase,
then their mass and stiffness lines
will not cancel at the intersection
and a smooth curve will appear
instead, as seen in Figure 3.10.

In order to excite all the
modes within the frequency
range of interest, several shaker
or accelerometer locations should
be examined.  A point or line
on the structure that remains
stationary is called a node point
or node line.  The node points of
a cantilever beam are illustrated
in Figure 3.11.  The number and
location of these nodes are a
function of the particular mode
of vibration and increase as mode
number increases.

If the response is measured at
the end of the beam at point 1 and
excitation is applied at point 3, all

Figure 3.10
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modes will be excited and the
resulting frequency response will
contain all the modes as shown
in Figure 3.10.  However, if the
response is at point 1 but the
excitation is moved to point 2,
the second mode will not be ex-
cited and the resulting frequency
response will appear as shown in
Figure 3.12.  Referring to Figure
3.11, note that point 2 is a node
point for mode 2 and very near a
node point for mode 3.  Mode 2
does not appear in the imaginary
display and mode 3 is barely dis-
cernible.  In dB coordinates, the
mode 3 appears to exist but it is
still difficult to observe mode 2.
It may be advisable or necessary
at times to gather more than one
set of data at different excitation
locations in order to measure
all the modes.  It should also
be noted that the same observa-
tions can be made in an impact
test where the response point
would also be moved to various
locations.

Another concept associated
with a linear structure concerns
a property of the frequency re-
sponse matrix.  The frequency
response matrix for a linear sys-
tem can be shown to be symmet-
ric due to Maxwell’s Reciprocity
Theorem.  Simply stated, a mea-
surement with the excitation at
point i and the response at point j
is equal to the measurement with
the excitation at point j and the
response at point i.  This is illus-
trated in Figure 3.13.  A check
can be made on the measurement
process by comparing these two
reciprocal measurements at vari-
ous pairs of points and observing
any differences between them.
This can be helpful for noting
nonlinearities when applying
different force levels.
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Introduction

The previous chapter presented
several techniques for making
frequency response measure-
ments for modal analysis.  Having
acquired this data, the next major
step of the process is the use of
parameter estimation techniques
– “curve fitting” – to identify the
modal parameters.  A vast amount
of literature exists on the subject
of curve fitting measured data to
estimate the modal properties
of a structure.  However, this
information tends to be math-
ematically vigorous and is gener-
ally biased toward a particular
type of algorithm.  It is the intent
of this chapter to categorize, in a
conceptual manner, the different
types of curve fttters and discuss
the applications and problems
associated with those most
commonly implemented.

It was discussed earlier that a
minimum of one row or column of
the frequency response matrix, or
its equivalent, must be measured
in order to identify a complete set
of modal parameters.  Although
additional data is, in principle,
redundant information, it can be

Chapter 4

Modal Parameter Estimation

used to verify and increase the
confidence level of the estimated
parameters.  The frequency and
damping for each mode can be
estimated from any combination
of these measurements.  The
residues and, consequently, the
modal coefficients are then
computed for each measurement
point.  The mode shapes are
then scaled and sorted for each
resonant frequency.  Finally,
the modal mass and stiffness
can be determined from these
scaled parameters as illustrated
in Figure 4.1.

Figure 4.1
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Modal Parameters

One of the most fundamental
assumptions of modal testing is
that a mode of vibration can be
excited at any point on the struc-
ture, except at nodes of vibration
where it has no motion.  This is
why a single row or column of
the frequency response matrix
provides sufficient information
to estimate modal parameters.  As
a result, the frequency and damp-
ing of any mode in a structure are
constants that can be estimated
from any one of the measure-
ments as shown in Figure 4.2.
In other words, the frequency
and damping of any mode are
global properties of the structure.

In practical applications, it is
important to include sufficient
points in the test to completely
describe all the modes of interest.
If the excitation point has not
been chosen carefully or if
enough response points are
not measured, then a particular
mode may not be adequately rep-
resented.  At times it may become
necessary to include more than
one excitation location in order
to adequately describe all of the
modes of interest.  Frequency
responses can be measured
independently with single-point
excitation or simultanously with
multiple point excitations.

The mode shapes as a whole
are also global properties of
the structure, but have relative
values depending on the point of
excitation and scaling and sorting
factors.  On the other hand, each
individual modal coefficient that
makes up the mode shape is a
local property in the sense that it
is estimated from the particular
measurement associated with that
point as shown in Figure 4.3.

Figure 4.2
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Curve Fitting Methods

Due to the large amount of
literature and algorithms
currently available for curve
fitting structural data, it has be-
come difficult to determine the
exact need for each method and
which method is best.  There is no
ideal solution and the common
methods are only approximations.
Also, many of the methods are
very similar to each other and,
in some cases, simply extensions
of a few basic techniques.

Although there are several
ways in which curve fitting
methods can be categorized,
the most straightforward is
single-mode versus multiple-
mode classification.  Besides the
intuitive reasoning for single and
multiple mode approximations,
there are some practical reasons
for this classification.  The major
difference in the level of sophisti-
cation, or level of accuracy,
among curve fitters is between a
single mode and a multiple mode
method.  Also, the computing
resources needed (computation
speed, memory size and I/0
capability) for multiple-mode
methods can increase tremen-
dously.  Other sub-catagories
and extensions that fall mostly
within multiple mode methods
are shown in Figure 4.4.

Users generally fall into one of
three major groups.  The first
group is primarily concerned
with troubleshooting existing
mechanical equipment.  They are
usually concerned with time and
require a fast, medium quality
curve fitter.  The second group is
more serious about quantitative
parameter estimates for use in a
modal model.  For example, they

require more accuracy and
are willing to spend more time
obtaining results.  The final group
is pushing the state of the art and
is involved with development
work.  Accuracy, rather than
time, is of paramount importance.

Figure 4.4
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Single-Mode Methods

As stated earlier, the general
procedure for estimating modal
parameters is to estimate frequen-
cies and damping factors, then
estimate modal coefficients.
For most single-mode parameter
estimation techniques, however,
this is not always the case.  In
fact, it is not absolutely necessary
to estimate damping in order to
obtain modal coefficients.  This
is typical in a troubleshooting
environment where frequencies
and mode shapes are of primary
concern.

The basic assumption for single-
mode approximations is that in
the vicinity of a resonance, the
response is due primarily to that
single mode.  The resonant fre-
quency can be estimated from the
frequency response data (illus-
trated in Figure 4.5) by observing
the frequency at which any of the
following trends occur:

Figure 4.5
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It was discussed earlier that
the height of the resonant peak
is a function of damping.  The
damping factor can be estimated
by the half-power method or other
related mathematical or graphical
method.  In the half-power
method, the damping is estimated
by determining the sharpness
of the resonant peak.  It can be
shown from Figure 4.6 that damp-
ing can be related to the width of
the peak between the half-power
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points: points below and above
the resonant peak at which the
response magnitude is .7071 times
the resonant magnitude.

One of the simplest single-mode
modal coefficient estimation tech-
niques is the quadrature method,
often called “peak picking”. Modal
coefficients are estimated from
the imaginary (quadrature) part
of the frequency response, so
the method is not a curve fit in
the strict sense of the term.  As
mentioned earlier, the imaginary
part reaches a maximum at the
resonant frequency and is 90°
out of phase with respect to the
input.  The magnitude of the
modal coefficient is simply taken
as the value of the imaginary
part at resonance as illustrated
in Figure 4.7.  The sign (phase) is
taken from the direction that the
peak lies along the imaginary
axis, either positive or negative.
This implies that the phase angle
is either 0° or 180°.

The quadrature response method
is one of the more popular tech-
niques for estimating modal
parameters because it is easy to
use, very fast and requires mini-
mum computing resources.  It is,
however, sensitive to noise on the
measurement and effects from
adjacent modes.  This method is
best suited for structures with
light damping and well separated
modes where modal coefficients
are essentially real valued.  It is
most useful for troubleshooting
problems, however, where it is
not necessary to create a modal
model and time is limited.

Figure 4.6
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Another single-mode technique,
called the circle fit, was originally
developed for structural damping
but can be extended to the
viscous damping case.  Recall
from Chapter 1 that the frequency
response of a mode traces out a
circle in the imaginary plane.
The method fits a circle to the
real and imaginary part of the
frequency response data by
minimizing the error between
the radius of the fitted circle and
the measured data.  The modal
coefficient is then determined
from the diameter of the circle
as illustrated in Figure 4.8.  The
phase is determined from the
positive or negative half of the
imaginary axis in which the
circle lies.

Frequency and damping can be
estimated by one of the methods
discussed earlier or by some of
the MDOF methods to be dis-
cussed later.  Damping can also
be estimated from the spacing
of points along the Nyquist plot
from the circle.

The circle fit method is fairly fast
and requires minimum computer
resources.  It usually results in
better parameter estimates than
obtained by the quadrature
method because it uses more
of the measurement information
and is not as sensitive to effects
from adjacent modes as illus-
trated in Figure 4.9.  It is also less
sensitive to noise and distortion
on the measurement.  However,
it requires much more user
interaction than the quadrature
method; consequently, it is prone
to errors, particularly when fitting
closely spaced modes.

A SDOF method related to the
circle fit is a frequency domain
curve fit to a single-mode analyti-
cal expression of the frequency
response.  This expression is
generally formulated as a second
order polynomial with residual
terms to take into account the
effects of out of band modes.
Because of its similarities to
the circle fit, it possesses the
same basic advantages and
disadvantages.

Concept of
Residual Terms

Before proceeding to multiple-
mode methods, it is appropriate
to discuss the residual effects
that out-of-band modes have on
estimated parameters.  In general,
structures possess an infinite
number of modes.  However,
there are only a limited number
that are usually of concern.
Figure 4.10 illustrates the analyti-
cal expression for the frequency

Figure 4.9
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response of a structure taking
into account the total number of
realizable modes.  Unfortunately,
the measured frequency response
is limited to some frequency
range of interest depending on the
capabilities of the analyzer and
the frequency resolution desired.
This range may not necessarily
include several lower frequency
modes and most certainly will not
include some higher frequency
modes.  However, the residual
effects of these out-of-band
modes will be present in the
measurement and, consequently,
affect the accuracy of parameter
estimation.

Although parameters of the
out-of-band modes cannot be
identified, their effects can be
represented by two relatively
simple terms.  It can be seen
from Figure 4.11 that the effects
of the lower modes tend to have
mass-like behavior and the effects
of the higher modes tend to have
stiffness-like behavior.  The
analytical expression for the
residual terms can then be written
as shown in Figure 4.12.  Notice
that the residual terms are equiva-
lent to the asymptotic behavior of
the mass and stiffness of a SDOF
system discussed in the chapter
on structural dynamics.

Useful information can often be
gained from the residual terms
that has some physical signifi-
cance.  First, if the structure is
freely supported during the test,
then the low frequency residual
term can be a direct measure of
rigid body mass properties of the
structure.  The high frequency
term, on the other hand, can be a
measure of the local flexibility of
the driving point.

Figure 4.11
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Multiple-Mode Methods

The single-mode methods
discussed earlier perform
reasonably well for structures
with lightly damped and well
separated modes.  These methods
are also satisfactory in situations
where accuracy is of secondary
concern.  However, for structures
with closely spaced modes, par-
ticularly when heavily damped,
(as shown in Figure 4.13) the
effects of adjacent modes can
cause significant approximations.
In general, it will be necessary
to implement a multiple-mode
method to more accurately
identify the modal parameters
of these types of structures.

The basic task of all multiple-
mode methods is to estimate
the coefficients in a multiple-
mode analytical expression for
the frequency response function.
This is done by curve fitting
a multiple-mode form of the
frequency response function to
frequency domain measurements.
An equivalent method is to curve
fit a multiple response form of
the impulse response function
to time domain data.  In either
process, all the modal parameters
(frequency, damping and modal
coefficient) for all the modes are
estimated simultaneously.

There are a number of multiple-
mode methods currently available
for curve fitting measured data to
estimate modal parameters.
However, there are essentially
two different forms of the fre-
quency response function which
are used for curve fitting.  These
are the partial fraction form and

Figure 4.13

Damping and

modal coupling

64.0

64.0

80

/Div

2.0

/Div

Mag

Mag

0.0

0.0

433.7

443.7

Hz

Hz

2.4437k

2.4437k

Light Damping and Coupling

Heavy Damping and Coupling

Figure 4.14

Frequency

response

representation

H( ) =ω
b sn + b,   sn - 1 + .  .  .0

Polynomial

h(t) =
n

k = 1
Σ Complex Exponential

H( ) =ω
n

k = 1
Σ

rk*
j - pk*ω

rk
j - pkω

+ Partial Fraction

a sm + a,   sm - 1 + .  .  .0

rk e- kt + rk*e- *ktσ σ



46

the polynomial form which are
shown in Figure 4.14.  They are
equivalent analytical forms and
can be shown to be related to
the structural frequency response
developed earlier in Chapter 1.
The impulse response function,
obtained by inverse Fourier trans-
forming the frequency response
function into the time domain, is
also shown in Figure 4.14.

When the partial fraction form
of the frequency response is
used, the modal parameters can
be estimated directly from the
curve fitting process.  A least
squares error approach yields a
set of linear equations that must
be solved for the modal coeffi-
cients and a set of nonlinear
equations that must be solved for
frequency and damping.  Because
an iterative solution is required
to solve these equations, there is
potential for convergence prob-
lems and long computation times.

If the polynomial form of the
frequency response is used, the
coefficients of the polynomials
are identified during the curve
 fitting process.  A root finding
solution must then be used to
determine the modal parameters.
The advantage of the polynomial
form is that the equations are
linear and the coefficients can be
solved by a noniterative process.
Therefore, convergence problems
are minimal and computing time
is more reasonable.

The complex exponential method
is a time domain method that fits
decaying exponentials to impulse
response data.  The equations
are nonlinear, so an iterative
procedure is necessary to obtain a
solution.  The method is relatively
insensitive to noise on the data,
but suffers from sensitivity to
time domain aliasing, as a result
of truncation in the frequency
domain from inverse Fourier
transforming the frequency
responses.

In principle, it should not matter
whether frequency domain data
or time domain data is used
for curve fitting since the same
information is contained in both
domains.  However, there are
some practical reasons, based
on frequency domain and time
domain operations, that seem to
favor the frequency domain.  One,
the measurement data can be
restricted to some desired fre-
quency range and any noise or
distortion outside this range can
effectively be ignored.  Another,
the cross spectra and autospectra

needed to compute frequency
responses can be formed faster
than the corresponding time
domain correlation functions.  It
is true that the time domain can
be used to select modes having
different damping values, but this
is usually not as important as the
ability to select a frequency range
of interest.

Each method has its advantages
and disadvantages, but the
fundamental problems of noise,
distortion and interference from
adjacent modes remain.  As a
result, none of the methods work
well in all situations.  It is also
unlikely that some “magic”
method will be discovered that
eliminates all of these problems.
All of the methods work well
with ideal data, but cannot be
evaluated by analytical means
alone.  The important factor is
how well they work, or gracefully
fail, with real experimental
data complete with noise and
distortion.
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Concept of Real
and Complex Modes

The structural model discussed
so far is based on the concept of
proportional viscous damping
which implies the existence of
real, or normal, modes.  Math-
ematically, this implies that
the physical damping matrix
can be defined as linear combi-
nation of the physical mass and
stiffness matrices as shown in
Figure 4.15.  The mode shapes,
are, in effect real valued, mean-
ing the phase angles differ by 0°
or 180°.  Physically, all the
points reach their maximum
excursion at the same time as
in a standing wave pattern.  One
of the consequences of this
assumption, discussed earlier,
is that the imaginary part of the
frequency response reaches a
maximum at resonance and the
real part is 0 valued as illus-
trated in Figure 4.16.  Note also
that the Nyquist circle lies along
the imaginary axis.

However, physical structures
exhibit a more complicated form
of damping which results in
non-proportional damping. The
mode shapes are, generally,
complex valued, meaning the
phase angles can have values
other than 0° or 180°.  Physi-
cally, the points reach their
maximum excursions at various
times as in a traveling wave
pattern.  With non-proportional
damping, the imaginary part
of the frequency response no
longer reaches a maximum at
resonance nor is the real part
nonzero valued as illustrated in
Figure 4.17.  Note also that the
Nyquist circle is rotated at an
angle in the complex plane.

Physically, this means that the
damping is sufficiently small so
that coupling is a second-order
effect.  It should be noted that
closely-spaced modes often
appear complex as a result of the
effects from adjacent modes as
illustrated in Figure 4.18.  In
reality, they may actually be
more real than they appear.

Figure 4.15
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Introduction

The basic techniques for perform-
ing a modal test to identify the
dynamic properties of a structure
have been described in the previ-
ous chapters.  An introduction to
the applications of the resulting
frequency responses and modal
parameters is the focus of this
chapter.  The discussion is spe-
cifically concerned with the uses
of a response model or a modal
model with structural analysis
methods as shown in Figure 5.1.
The intent is to bring together the
experimental and analytical tools
for solving noise, vibration and
failure problems.

A response model is simply the
set of frequency response mea-
surements acquired during the
modal test.  These measurements
contain all the dynamics of the
structure needed for subsequent
analyses.  A modal model is
derived from the response model
and is a function of the parameter
estimation technique used.  It
not only includes frequencies,
damping factors, and mode
shapes, but also modal mass and
modal stiffness.  These masses
and stiffnesses depend on the
method that was used to scale
the mode shapes.  A subset of the
modal model consisting of only
the frequencies and unscaled
mode shapes can be useful for
some troubleshooting applica-
tions where frequencies and

Chapter 5

Structural Analysis Methods

Figure 5.1
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mode shapes are the primary
concern.  However, for applica-
tions involving analysis methods,
such as structural modification
and substructure coupling,
a complete modal model is
required.  This definition of a
complete modal model should
not be confused with the concept
of a truncated mode set in which
all the modes are not included.
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Structural Modification

When troubleshooting a vibration
problem or investigating simple
design changes, an analysis
method known as structural
modification, illustrated in
Figure 5.2, can be very useful.
Basically, the method determines
the effects of mass, stiffness and
damping changes on the dynamic
characteristics of the structure.
It is a straightforward technique
and gives reasonable solutions for
simple design studies.  Some of
the benefits of using structural
modification are reduced time
and cost for implementing design
changes and elimination of the
trial-and-error approach to solving
existing vibration problems.  The
technique can be extended to an
iterative process, often called
sensitivity analysis, in order to
categorize the sensitivity of
specific amounts of mass,
stiffness or damping changes.

In general, structural modification
involves two interrelated design
investigations.  In the first, a
physical mass, stiffness or damp-
ing change can be specified with
the analysis determining the
modified set of modal parameters.
The second involves specifying a
frequency and having the analysis
determine the amount of mass,
stiffness or damping needed to
shift a resonance to this new
frequency.  For the user’s conve-
nience, specific applications of
these basic methods, such as
tuned absorber, design are
usually included.

Figure 5.2
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to derive and is sensitive to the
number and type of modes
extracted.
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Finite Element
Correlation

Finite element analysis is a
numerical procedure useful for
solving structural mechanics
problems.  More specifically, it is
an analytical method for deter-
mining the modal properties of
a structure.  It is often necessary
to validate the results from this
theoretical prediction with
measured data from a modal
test.  This correlation method is
generally an iterative process
and involves two major steps.
First, the modal parameters, both
frequencies and mode shapes, are
compared and the differences
quantified.  Second, adjustments
and modifications are made,
usually to the finite element
model, to achieve more compa-
rable results.  The finite element
model can then be used to simu-
late responses to actual operating
environments.

The correlation task is usually be-
gun by comparing the measured
and predicted frequencies.  This
is often done by making a table to
compare each mode frequency by
frequency as shown in Table 5.1.
It is more useful, however, to
graphically compare the entire
set of frequencies by plotting
measured versus the predicted
results as shown in Figure 5.3.
This shows not only the relative
differences between the frequen-
cies, but also the global trends
and suggests possible causes of
these differences.  If there is a
direct correlation the points will
lie on a straight line with a slope
of 1.0.  If a random scatter arises,
then the finite element model may
not be an accurate representation
of the structure.  This could result
from an inappropriate element

Figure 5.3

Graphical

comparison

of frequencies

Table 5.1

Tabular

comparisons

of frequency

Fe

Test

type or a poor element mesh in
the finite element model.  It
could also result from incorrect
boundary conditions in either the
test or the analysis.  If the points
lie on a straight line, but with
a slope other than 1, then the
problem may be a mass loading
problem in the modal test or an
incorrect material property, such
as elastic modulus or material
density, in the finite element
model.

The parameter comparison is
not actually this simple, nor is
it complete, because the mode
shapes must also be compared

at the same time to ensure a
one-to-one correspondence
between the frequency and the
mode shape.  Remember that a
distinct mode shape is associated
with each distinct frequency.  One
technique for performing this
comparison is to simply overlay
the plotted mode shapes from
the test and analysis and observe
their general trends.  This can
become rather difficult, though,
for structures with complicated
geometry because the plots tend
to get cluttered.

FE (Hz) Test (Hz)

17.5 15.7

21.3 19.4

26.4 25.5

30.0 28.3

31.2 30.5



51

Numerical techniques have
been developed to perform statis-
tical comparisons between any
two mode shapes, illustrated in
Figure 5.4.  The first results in
the modal scale factor (MSF) – a
proportionality constant between
the two shapes.  If the constant is
equal to 1.0, this means the
shapes were scaled in the same
manner such as unity modal
mass.  If the constant is any value
other than 1.0, then the shapes
were scaled differently.  The
second, and more important
method, results in the modal
assurance criterion (MAC), a
correlation coefficient between
the two mode shapes.  If the
coefficient is equal to 1.0, then
the two shapes are perfectly
correlated.  In practice, any value
between 0.9 and 1.0 is considered
good correlation.  If the coeffi-
cient is any value less than 1.0,
then there is some degree of
inconsistency, proportional to the
value of the factor, between the
shapes.  This can be caused by an
inaccurate finite element model,
as described earlier, or the pres-
ence of noise and nonlinearities
in the measured data.  It should
be noted that in order for these,
comparisons to have a reasonable
degree of accuracy, it is very
important that coordinate
locations in the modal test
coincide with coordinates in the
finite element mesh.

Figure 5.4

Numerical
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mode shapes

Mode 2

Mode 1

MAC — Correlation Coefficient

MSF — Proportionality Constant

How were the modes scaled?

Unit Modal Mass
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Are the modes the same mode?

There are other numerical
methods for comparing the
measured and predicted modal
parameters of a structure.  One
such technique, called direct
system parameter identification,
is the derivation of a physical
model of a structure from mea-
sured force and response data.
However, techniques such as this
are beyond the scope of this text
and can be found in technical
articles about modal analysis.
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Substructure
Coupling Analysis

In analyses involving large
structures or structures with
many components it may not
be feasible to assemble a finite
element model of the entire
structure.  The time involved
in building the model may be
unacceptable and the model may
contain more degrees of freedom
than the computer can handle.  As
a result, it may be necessary to
employ a modeling reduction
method known as substructure
coupling or component mode
synthesis illustrated in Figure 5.5.

Substructure coupling involves
the division of the structure into
various components, modeling
these components for their
individual dynamics and then
combining these individual results
into one model to analyze the
dynamics of the complete struc-
ture.  These component models
can take on several different
mathematical forms each of
which has a particular usefulness.
Common models include modal
models and physical models from
a finite element analysis, modal
models from a modal test, rigid
body models and physical springs
and dampers.  The component
models are combined through a
transformation that relates their
dynamics at the interfaces.  The
results from the analysis of the
complete structure can then be
correlated with equivalent modal
test results in the same manner as
described earlier.

A modal model of a component
for substructure coupling must
contain the modal mass, stiffness
and damping factors along with
the modal matrix.  The modal
matrix of a structure is simply
a matrix whose columns are

comprised of the respective
modes of the structure.  In the
special case where the mode
shapes have been scaled to unity
modal mass, the modal model
reduces to the frequencies,
damping and mode shapes.

Figure 5.5
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Forced Response
Simulation

One of the major design goals
for most engineering analyses
is to be able to predict system
responses to actual operating
forces.  This can enable engineers
to ultimately find optimal
solutions to troublesome noise
or vibration problems.  This
technique, illustrated in
Figure 5.6, is commonly called
forced response simulation
or forced response prediction.
Forces can be specified for any
degree of freedom in the modal
model and displacements,
velocities or accelerations can
be predicted for any degree
of freedom.

Figure 5.6
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