Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer

Application Note 346-2

INTRODUCTION

How a Balanced Circuit Differs from an Unbalanced Circuit

A balanced circuit has its electrical midpoint grounded. An unbalanced circuit, however, has one side grounded. A balanced circuit is typically used in communications equipment because a balanced circuit has the advantage of better spurious noise suppression.

Figure 1 shows a balanced cable which is an example of a balanced circuit. The voltages of the cable’s two conductors are at every point equal in amplitude and opposite in phase. Figure 2 shows an unbalanced cable which is an example of an unbalanced circuit. Most measurement circuits in HP’s impedance analyzers and LCR meters are unbalanced.

Figure 1. Balanced cable

Figure 2. Unbalanced cable
Measuring a Balanced Circuit with an Unbalanced Measurement Instrument

A balanced circuit cannot be directly measured with an unbalanced measurement instrument because of the difference in their configuration. When measuring balanced circuits, the unbalanced measuring instrument requires a balun (balanced to unbalanced) transformer. A balun is a type of impedance-matching RF transformer.

Figure 3 shows the configuration for measuring a balanced circuit with an unbalanced instrument.

Note: In balanced cable measurements, residual current in the balun or the measuring instrument can cause measurement errors. To reduce the degree of error, perform open/short and load compensation at the measurement terminals of the balun.

SELECTING A BALUN

There are several types and brands of balun transformers. When selecting a balun, ensure that frequency is compatible with your measurement requirements. When you measure the impedance parameters of a balanced circuit, you don’t have to use the balun which has the same impedance with the circuit under test. However, when you measure the transmission or reflection of it, you have to use a balun which has the same impedance with the circuit under test to keep impedance matching. Table 1 show recommended balun transformers.

MEASUREMENT CONFIGURATION WITH A BALUN AND COMPENSATION

Impedance Measurement Configuration with HP4194A Impedance Analyzer

Figure 4 shows impedance measurement configuration (1) with the HP4194A.

Table 1. Recommended balun transformers

<table>
<thead>
<tr>
<th>Unv/Bal. (W)</th>
<th>Bandwidth</th>
<th>Type No.</th>
<th>Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50:50</td>
<td>0.1—125MHz</td>
<td>0001BB</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>50:75</td>
<td>0.1—125MHz</td>
<td>0101BB</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>50:100</td>
<td>0.1—125MHz</td>
<td>0300BB</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>50:600</td>
<td>0.1—65MHz</td>
<td>0700BB</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>75:50</td>
<td>0.1—100MHz</td>
<td>1000</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>75:75</td>
<td>0.1—100MHz</td>
<td>1100</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>75:100</td>
<td>0.1—100MHz</td>
<td>1300</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>75:600</td>
<td>0.1—60MHz</td>
<td>1700</td>
<td>North Hills Electronics</td>
</tr>
<tr>
<td>75:75</td>
<td>20Hz—9MHz</td>
<td>T32—9808—23180</td>
<td>NEC</td>
</tr>
<tr>
<td>75:110</td>
<td>300kHz—30MHz</td>
<td>T32—8801—40046</td>
<td>NEC</td>
</tr>
</tbody>
</table>

To Calibrate/Compensate for (1):

1. Perform open/short/load calibration at the APC7® connector of the HP 16085B which has an internal balun.

 Standards:
 - 0Ω............ HP PN 04191-85300
 - 0S............ HP PN 04191-85302
 - 50Ω........... HP PN 04191-85301

2. Perform 0Ω/0S zero offset at the closest terminal to the DUT.

To Calibrate/Compensate for (2):

1. Assemble a female BNC connector as shown in Figure 5.

2. Perform open/short/load calibration at the BNC connector using the following BNC Calibration standards:

 Short Standard:
 - HP PN 1250-0929

 50Ω Load Standard:
 - HP PN 11652-60001

3. Remove the connector and connect the DUT. Measure the DUT.
Impedance Measurement Configuration with the HP4395A(#010)

Figure 6 shows impedance measurement configuration (2) with the HP4395A.

To Calibrate/Compensate:

Refer to “To Calibrate/Compensate for (2)” of Impedance Measurement Configuration with HP4194A Impedance Analyzer.

Figure 4. Measurement Configuration (1)

Figure 5. Assembling BNC connector

Figure 6. Measurement Configuration (2)
Transmission Measurement Configuration with a Network Analyzer or Gain-Phase Analyzer

Now we change a subject from impedance parameter measurements to network parameter measurements.

Figure 7 shows transmission measurement configuration (3) with a network analyzer of gain-phase analyzer.

To Calibrate/Compensate:

Short the terminals closest to the DUT to the signal out and to the test port, then perform response/thru calibration.

REFERENCES

Application Note 339-4
Measuring The Impedance of Balanced Cables
HP Pub. No.: 5950-2918

Application Note 380-2
Measuring Cable Parameters
HP Pub. No.: 5950-2399

For Information on Balun, Contact the Manufacturers:

North Hills Electronics, Inc.
Alexander Place Glen Cove, New York, USA, 11542
Tel: (516) 671-5700
Telex: 46-6886
Fax: (516) 759-3327

NEC Corporation
1-4-28 Mita Minato-ku Tokyo, Japan
Tel: (03) 3454-1111

APC-7® is a U.S. registered trademark of the Bunker Ramo Corporation.

For more information about Hewlett-Packard test & measurement products, applications, services, and for a current sales office listing, visit our web site, http://www.hp.com/go/tmdir. You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:
Hewlett-Packard Company
Test and Measurement Call Center
P.O. Box 4026
Englewood, CO 80155-4026
1 800 452 4844

Canada:
Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(905) 206 4725

Europe:
Hewlett-Packard European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(31 20) 547 9900

Japan:
Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192-8510, Japan
Tel: (81) 426 56 7832
Fax: (81) 426 56 7840

Latin America:
Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive
9th Floor
Miami, Florida 33126
U.S.A.
Tel: (305) 267-4245
(305) 267-4220
Fax: (305) 267-4288

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Australia
Tel: 1800 629 485 (Australia)
0800 738 378 (New Zealand)
Fax: (61 3) 9210 5489

Asia Pacific:
Hewlett-Packard Asia Pacific Ltd.
17-21/F Shell Tower, Times Square,
1 Matheson Street, Causeway Bay,
Hong Kong
Tel: (852) 2599 7777
Fax: (852) 2506 9285

Data subject to change
Copyright © 1998
Hewlett-Packard Company
Printed in U.S.A. 6/98
5091-4480E