APPLICATION NOTE 912

HEWLETT |
PACKARD @

), HP
ASSOCIATES

AN ATTENUATOR DESIGN
USING PIN DIODES

Constant Impedance
Current Controlled
10 ViIHz to 1.0 GHz
Bandwidth

I 620 Page Mill Road, Palo Alto, California, U.S.A., Cable "HEWPACK" Tel. (415) 321-85710

@Eumpe: 54 Route Des Acacias, Geneva, Switzerland, Cable:"HEWPACKSA" Tel.(022) 42.81.50



Since its introduction, the PIN diode has found use in
many unique applications. This article describes its use as
an element in a constant impedance current controlled
attenuator.

Such an attenuator can be used as a remote, program-
mable or automatic gain control element in circuits where
a minimum effect on the source and load is required. It is
particularly useful as an interstage gain control element in
transistor amplifiers where it will provide a wide range of
gain control without disturbing the optimum operating bias
point of the transistors. This minimizes changes in transistor
input and output impedance levels, phase shift, and tuning
while achieving the required change in overall gain.

The PIN diode used in this attenuator is distinguished
from a normal p-n type junction in that it has an intrinsic
region sandwiched between the p'-doped and the n*-doped
silicon layers. This intrinsic region has almost negligible
doping; and consequently a very high resistance. This high
resistance and a relatively large I-layer width result in ex-
tremely low junction capacitance and high breakdown volt-
age. When forward bias is applied across the diode, the
conductivity of the I-layer is increased by the injection of
minority carriers into the I-layer. If the diode's minority
carrier lifetime is adjusted so that it is relatively long (typi-
cally greater than 100 ns) then it is found that high fre-
quency currents see the diode as essentially a resistance. This
RF resistance is controllable by adjusting the forward bias
on the diode. The lowest frequency of operation is deter-
mined by the minority carrier lifetime and for lifetimes
around 100 ns it is typically 10 MHz.

For frequencies much below 10 MHz, the PIN diode
appears as a standard rectifier diode. Partial rectification will
also be observed near the low frequency limits if the peak
level of the RF signal is of a sufficient magnitude on reverse
bias half cycles to deplete the minority carriers in the I-layer.

The following may be considered as the equivalent circuit
at radio frequencies above 10 MHz:
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Where C, = package capacitance

(typical value)

C, = junction capacitance
(typical value)

L, = package inductance inH
(typical value)

R. = parasitic series resistance  2.5% 252 252
(typical value)

R; = conductivity modulated - - —
junction resistance

0.07 pF 0.07 pF 0.07 pF
0.5nH 04nH

Under the forward bias the intrinsic layer resistance
varies according to the following relationship:

R; =26 1"0% (1)

where 1 is the forward bias current in ma.

This relationship is good for the range of bias current
between 10 A and 10 mA. Above 10 mA the parasitic series
tesistance of approximately 2.5 Q is approached and towards
zero bias and reverse bias a limit of 10,000 Q is asymptotically
approached. This variation of resistance is shown in Figure
2. It is this characteristic of the PIN diode that makes it
ideally suitable for use in a voltage controlled attenuator.
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Figure 2
DESIGN OF CONSTANT IMPEDANCE ATTENUATOR

A constant impedance attenuator can be achieved by a
proper selection of resistance values for the symmetrical
=-network consisting of Ry and Ry shown in Figure 3.

Let the impedance of the network to the right of AA” be

indicated as Z,, where Z, = [R“ - RFIFZ%U] ?

For the matched condition the input impedance of the
network must equal the source impedance.

Therefore:
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R, and R can be expressed in terms of the characteristic
impedance of the network (Z,) and the input to output
voltage ratio K as follows:

K+1
R, =2Z, [ﬁ] (7)
and from the initial equation:
L[ L

From the above relationships we can plot the variation
of the pi arm resistances with respect to the input-output
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Figure 3

voltage ratio K. K may also be expressed as power attenua-
tion in dB. These relationships are shown plotted in Figure
4 for the case of Z, = 50 Q.

Since the PIN diode has an RF resistance characteristic
that is a function of bias as shown in Figure 2, it can be a
suitable resistance element for use in such an attenuator.
Using this curve as a transfer function, a plot of the attenu-
ator’s attenuation with respect to the bias currents needed to
produce the necessary resistance values for Ry and Ry can be
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Figure 4

made. This is shown in Figure 5. All that remains is the
design of a circuit that will suitably incorporate the PIN
diodes in an RF transmission-type structure and which in-
corporates the necessary dc biasing circuitry for control of
the PIN diode resistances. The design of such a structure
with the following performance goals is described below:

Frequency Range 10 MHz to 1 GHz
Attenuation Range 1 to 20 dB
VSWR 2:1 maximum over entire

frequency range

It was found practical to achieve the necessary attenuation
control using one variable current source and one constant
voltage source. Since the range of frequency operation is
quite wide, it was found that the parasitic reactances of the
network had to be reduced to the lowest possible values to
minimize phase shift and reflections. Microstrip techniques
were used in conjunction with planar dielectric capacitors

and pill packaged PIN diodes. Over narrower frequency
ranges and at lower frequencies, conventional components
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and glass packaged diodes could be used just as well.
Figure 6 shows the circuit used in the final attenuator layout.

A variable bias current, which is supplied through a low
pass filter, directly controls the resistance of Ry. This current
also indirectly controls the resistance of R; by subtracting
from the bias current that is supplied by the 9.0 V bias
source. In this manner it is possible to produce the increasing
de current through the series arm simultaneously with a
decreasing current through the shunt arms, as required by
the variation in attenuation with current shown in Figure 5.

The equivalent dc circuit is shown in Figure 7, and the
equivalent RF circuit in Figure 8, with the diode acting as
variable resistors in a normal = network.

The low pass filter was incorporated to provide isolation
between the RF circuit and the dc bias current while offer-
ing a low resistance path for the variable dc bias current.
Isolation could also have been provided through the use of
a high resistance bias line. However, this would require a
considerably higher bias voltage.
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The following curves show the measured results on the
final PIN attenuator configuration. Figure 5 is a comparison
between the theoretical bias current needed to produce a
given attenuation and the actual measured current. The cur-
rents shown are those through the two dc branches con-
taining R, and Ry. The close correlation between these curves
attests to the closeness of the actual diode behavior with the
relationship given in equation (1).
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Figure 7

Figure 9 shows attenuation versus frequency for various
bias levels and Figure 10 shows the variation of attenuation
with bias current. From Figure 9 it may be seen that at the
higher attenuation levels (low bias) there is a greater vari-
ation in the attenuation level as the full frequency range is

Figure 8

covered. Towards the lower frequencies, the rising attenua-
tion with constant bias is due primarily to the increasing
reactance of the strip lines blocking capacitors. A portion
of this effect can be seen in Figure 11 as increasing VSWR
at low frequencies. At high frequencies, the lowering of
attenuation (at constant bias) is primarily due to capacitive
coupling between input and output. This is due to the
diode’s parasitic capacitance which turns out to be the limit-
ing factor of high frequency high attenuation operation. In
Figure 12 the attenuator's transmission phase shift with
frequency is shown. Here again it may be seen that the series
transmission mechanism is basically capacitive at the higher
attenuation levels.

Figures 13a through 13d show the measured output dis-
tortion versus the input RF power with bias current as a
parameter. At frequencies above 100 MHz, distortion with
the power levels shown has dropped considerably and is
practically immeasurable. The reason for the output distor-
tion is the non-ideal resistance seen by the RF at lower fre-
quencies. It is in this frequency range (10 to 100 MHz) that
the PIN diode's carrier lifetime is not long enough to han-
dle the slower moving RF on its reverse bias variation. If the
RF power is high enough, then the stored charge in the
intrinsic region will be sufficiently depleted on the negative
half cycles to cause partial rectification and hence distortion
in the output.

Although a pill package diode was used in the finalized
PIN attenuator, there is no reason why this has to be the
only choice. The pill was used for convenience in mounting
and keeping to an absolute minimum the inductive reactance
associated with a packaged diode. An attenuator using glass
package diodes such as the HPA 3001 could also be con-
structed. Small inductive reactances would be inherent in
the higher frequencies of operation with a correspondingly
larger transmission phase shift and slightly higher VSWR.
Any other circuit elements should be ones with the lowest
possible parasitic reactances. The package inductance of the
HPA 3001 is approximately 3 nhy as compared to the HPA
3101's 0.5 nhy. The electrical performance of these two
diodes will otherwise be identical.
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