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Hewlett-Packard Application Note 243-2

Control System Development Using
Dynamic Signal Analyzers

Dynamic Signal Analyzers (DSAs) represent a new generation of microprocessor-based
test instruments designed to support the development of control systems. By combining
the computational resources of microprocessors with the accuracy of precision
measurement hardware, DSAs combine high-performance measurements and powerful
computer-aided-engineering. By consolidating this much power into a single instrument,
DSAs have expanded the role of test instruments beyond traditional testing functions to
include contributions in the areas of modeling, design and analysis.

The purpose of this application note is to examine how the advanced measurement and
analysis capabilities of a DSA can be applied to the development and production of
control systems to reduce testing time, reduce analysis time, provide more information
from measurements and, in general, enhance the overall development and production
process.

Using This Application Note

This application note is designed for both the experienced control systems engineer who
may be unfamiliar with DSAs and the experienced DSA user entering the field of control
systems. To accommodate this broad range of readers, the note is divided into two parts.

Part 1 is a review of the basic concepts associated with control systems and linear control
theory. This section serves as a general resource and may be considered optional
reading for the experienced control system engineer.

Part 2 is an introduction to the features and functions of DSA's which directly contribute
to the development of control systems. Each feature or function is briefly described with
example applications provided.

A glossary of control system terms is provided in Appendix A.

Copyright © 1984, Hewlett-Packard Co.
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Part 1:

An Introduction to Control Systems and Classical Control Theory.

iu 1: Basic Terms and Eﬂiﬁbns

A control system has been formally described as, A system in which deliberate
guidance or manipulation is used to achieve a prescribed value of a variable."! With a
variable further defined as, “‘a quantity or condition which is subject to change,” it
becomes apparent that the components of a control system may be virtually any
definable entity, be it electrical, mechanical, biological, organizational or otherwise.

The human circulatory system, pacemakers, motor speed controls, clothes dryers,
automobile cruise controls and voltage regulators are a few examples of the vast number
of control systems in existence. The diversity of control systems may at first seem a
barrier against the development of a common analysis and design strategy. Fortunately, if
the components of a system can be represented through a common mathematical
symbolism, then there exists a collection of concepts and methods for studying the
physical properties of control systems known as control theory.

While a thorough study of control theory is far beyond the scope of this application note,
the following paragraphs present the basic concepts associated with classic control
theory as applied to continuous linear control systems.2

To categorize control systems with common traits or functions, several subclasses of
control systems have been defined. One of the basic categories of control systems are
those systems which operate without human intervention. Control systems in this category
are called automatic control systems. An example of an automatic control system is an
automobile cruise control which maintains the speed of the vehicle without attention from
the driver. If the driver disengages the cruise control, he then becomes part of the control
system regulating the speed of the car and, therefore, part of a nonautomatic control
system.

Another category involves those automatic control systems which involve mechanical
motion as the controlled variable. These control systems are called servomechanisms
(commonly referred to as servos) and are defined as, “An automatic feedback control
system in which the controlled variable is mechanical position or any of its time
derivatives.” While this definition seems straightforward, general usage has diluted the
literal meaning to include virtually any electronic, electro-mechanical or mechanical control
system.

Control systems are also categorized as being either open-loop or closed-loop. The
difference between these two categories, the use of feedback, becomes easier to
understand when viewing the basic model of a control system. Formal definitions of
open-loop and closed-loop control systems have therefore been incorporated into the
following chapter on control system modeling.

The first step in the design or analysis of a control system is to develop an analytical
model of the system. This is done by dividing the control system into functional blocks.
Each block may represent any portion of the control system from an individual
component to a group of components which perform an identifiable function.

1 American National Standards Institute specification MC85.1M-1981, Terminology for Automatic Control.

2 References for further study of modern or classic control theory as applied to linear, nonlinear, continuous
and discrete contro! systems are listed at the end of this note.
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2-1: The Open-Loop Model

FIGURE 1-1.

Figure 1-1a is a block diagram which represents a very basic control system. The letters
r and c represent the directly controlled variable and the reference input respectively. The
letter g represents an equation which describes the influence of the elements within the
functional block on a signal or action compared at the input and output of the functional
block. All lower case letters generally denote functions in the time domain unless
otherwise specified (for example, ¢ = c(t)). The upper case variables R and C in

Figure 1-1a represent the Laplace transform of r and ¢ expressed as functions of the
complex variable s'. The upper case G represents the Laplace transform of g and is
generally referred to as a transfer function?.

A simple example of the type of control system shown in Figure 1-1a is a potentiometer
connected as a voltage divider, as shown in Figure 1-1b. For this example the reference
input R would have units of radians, the directly controlled variable C units of volts, and
the transfer function G would be a constant with units of volts per radian (as shown in
Figure 1-1¢). A drawback of this type of a control system is its inability to respond to
dynamic changes in the system. For example, if a load resistance was connected to the
output, there would be an undesirable change in the output voltage. This type of control
system, which cannot take corrective action to alleviate undesirable changes of the
directly controlled variable, is called an open-loop control system.

R G =
r £ c

a. Control System Block Diagram (Open-Loop).

+ 15V
Vour

b. Control System Corresponding to Block Diagram of Figure 1a.

G
R VOLTS c >
RADIANS RADIAN VOLTS

R = FUNCTION WITH UNITS OF RADIANS.
G = TRANSFER FUNCTION WITH UNITS OF VOLTS/RADIAN.
C = FUNCTION WITH UNITS OF VOLTS.

c. Detailed Block Diagram of Control System Shown in Figure 1b.

' In general, capital letters denote transformed quantities. The quantities may be either Laplace transformed as
a function of the complex variable s, (e.g., G(s)), or Fourier transformed as a function of the frequency
variable jw, (e.g., G(jw)). Functions of s are generally abbreviated to their capital letter only (i.e.. G(s) is
abbreviated to G). Functions of jw, however, are never abbreviated.

2 A transfer function is defined as the ratio of the Laplace transform of the output to the Laplace transform of
the input in the absence of all other signals, and with all initial conditions zero. Input and output refer to the
signals or variables applied to and delivered from a system or element, respectively.



Cﬂer - Measurinl Performance

The primary objective in designing a control system is to construct a system that
achieves the desired output level as fast as possible and maintains that output with little or
no variation. One of the first techniques developed to measure a control system’s
compliance with these design goals was the step response.

3-1: Time Domain Performance

Step Response

The step response is the measured reaction of the control system to a step change in the

input. A typical step response and its associated parameters are illustrated in Figure 1-41.

The step response has several favorable characteristics which have maintained its

universal acceptance and popularity:

* the step stimulus is easy to generate

e the stimulus is easily modeled [u(t)] making the solution to the differential equation
(used to predict the system's time domain response) much less complicated

¢ several measurement techniques are available for recording the time domain
response to the step input

¢ key aspects of the control system’s performance can be derived from the step

response.
FIGURE 1-4.
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! Figure 1-4 is adapted from the American National Standard ANSI MC85.1M-1981 Terminology for Autornatic
Control.




| There are several measures of performance which can be derived from the step

| response. The rise time of the step response provides a measure of how fast a system
can initially achieve the desired output level. The maximum overshoot (shown in Figure
1-4 in terms of either peak value or maximum value of transient deviation) provides a

] relative measure of the maximum output level resulting from a specific input. The steady-
state deviation indicates a constant error in achieving a desired output. Settling time,

perhaps the most significant parameter, is a measure of how long it takes the system to

settle to its steady-state value.

If the system never settles to its steady-state value (for example, it constantly oscillates

\ about a desired output), the system is considered unstable. Taken one step further, the
settling time can be interpreted as a relative measure of stability, with a short settling time
considered more stable than a long settling time.

J In addition to the step response, there were two other early stimulus signals: the ramp
function [tu(t)) and the parabolic function [t2u(t)). These signals provided the same
simplicity in modeling as the step response and also provided a means of measuring a
control systems ability to track dynamic signals.

3-2: Frequency Domain Performance

The time domain responses to the step, ramp and parabolic forcing functions were the
| only universally accepted techniques for measuring the performance of a control system
until the early 1930s. It was during this period that three Bell Laboratories scientists, H.S.
|| Black, HW. Bode and H. Nyquist, were doing pioneering work on the characterization of
| control systems in the frequency domain. In an attempt to provide amplifiers with better
linearity, Black began a rigorous study of the effects of negative feedback on electronic
amplifiers (a basic form of automatic closed-loop control system). Early experiments
LY resulted in several observations including improved linearity and, in some cases,
unexpected oscillations in the amplifier's output. It was the unexpected oscillations which
5 inspired Nyquist to study the cause of such instabilities in closed-loop control systems.
| From his studies, Nyquist discovered that the stability of a closed-loop system could be
detarmined from a simple frequency response plot. Before discussing Nyquist's
discovery, it is helpful to review a few of the basic definitions and concepts associated
with the frequency domain aspects of a control system.

3-2,1; Frequency Domain Terms and Definitions
One of the most important transfer functions associated with a closed-loop control system
relates the directly controlled variable C to the reference input. The ratio C/R is referred to
as either the control ratio or the closed-loop transfer function; this note refers to it as the
latter. By solving for C/R in terms of G and H we have: C/R = G/(1 + GH), as shown in
Figure 1-5. As previously mentioned, capital letters with no subscripts represent
transformed quantities expressed as a function of s. The closed-loop transfer function can
therefore be expressed as:
Ce) _ _ Gy _ _GW
R(s) 1 + G(s)H(s) 1 + GH(s)
Important values of s are those values which set the numerator and/or denominator of the
closed-loop transfer function equal to zero. Values of s which set the numerator to zero
are called zeros of the closed-loop transfer function or closed-loop zeros. Values of s
which set the denominator equal to zero (i.e., s such that 1 + GH(s) = 0) are called
poles of the closed-loop transfer function or closed-loop poles.
At this point it is important to note that the complex variable s can be further expressed in
| terms of the variables o and jw. Thatis, s = ¢ + jw where ¢ represents the real or
{ damping component of s, and jw represents the imaginary or frequency component of s.




A common tool used to study control systems is a graph called the s-plane. The s-plane is
a two-dimensional Cartesian graph which represents values of s. The ordinate of the
s-plane represents the imaginary part of s (i.e., jw), and the abscissa represents the real
part of s (i.e., ¢). If values of s which constitute the closed-loop poles are plotted with X's
on the s-plane and the values which constitute closed-loop zeros are plotted with O’s, the
result is a pole/zero plot of the closed-loop transfer function as shown in Figure 1-6.

When the magnitude of the closed-loop transfer function is plotted as a third axis of the
s-plane, the effects of the poles and zeros on the magnitude of the closed-loop transfer
function at any value of s can be quickly realized as shown in Figure 1-7.

Figure 1-7 shows only the left half of the s-plane to illustrate the contour of |C/R| for
values of s along the jw axis (i.e., for values of s equal to O + jw). This contour is
significant in that it represents the same curve produced by evaluating the magnitude of
the Fourier transform of ¢ divided by the Fourier transform of r for positive values of
(i.e., |Cjw)R(jw)| for values of w =0). Therefore, this contour also represents the gain-
versus-frequency plot obtained by physically measuring the gain of a control system
between its input and output.

FIGURE1-5. e o 0. 5 e ard il
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FIGURE 1-6. . 13
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A similar diagram can be drawn for the phase of C{s)/R(s) as shown in Figure 1-8. Again
the contour presented by the values of < C(s)/R(s) along the s = 0 + jw axis represent
<C(jw)/R(jw) for positive values of w. This contour also represents the phase-versus-
frequency plot obtained by physically measuring the phase shift of a control system
between its input and output.

The information provided by the highlighted contours in Figures 1-7 and 1-8 represents
the frequency-dependent relation between steady-state sinusoidal input signals (R(jw))
and the resulting steady-state sinusoidal output signals (C(jw)), that is, they represent the
frequency response of the device characterized by C/R.

For transfer functions in general, the information produced by evaluating the Fourier
transform for all values of jw can be regarded as a subset of the averall contour
produced by evaluating the Laplace transform for all values of s. The Fourier transform of
a transfer function evaluated for positive values of w also represents the physically
measured gain and phase relationship (i.e., frequency response) between the input and
output of the device modeled by the transfer function.

FIGURE 1-7.
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FIGURE 1-8.
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3-2.2: Nyquist’s Stability Criterion (s-plane)

FIGURE 1-9.

OPEN-LOOP
TRANSFER
FUNCTION OF A
CLOSED-LOOP
CONTROL SYSTEM

With the evaluation of transfer functions over the s-plane well established, the fundamental
condition for stability discovered by Nyquist, can now be presented. Simply stated, for a
control system to be stable, there can be no closed-loop poles in the right half of the
s-plane. (Poles on the jw axis are not directly addressed but are generally considered to
represent instability.) This relationship between closed-loop pole locations and system
stability constitutes Nyquist's Stability Criterion as applied to the s-plane. This relationship
can be extremely useful in predicting the stability of a system if the position of each
closed-loop pole is known. Trying to determine the exact location of closed-loop poles
from measured data without a computer, however, can often be a difficult task.
Fortunately, Nyquist's original work included a very useful technique for evaluating the
presence of closed-loop poles in the right-half plane without necessarily knowing their
exact locations. To examine this technique closely, however, we will need a few more
terms and definitions.

In the preceding paragraphs it was established that the roots of the equation

1 + GH(s) = 0 (i.e. values of s for which GH{(s) = -1) were the closed-loop poles and the
sole factor in determining if the system would be stable. Because of its influence on the
stability of the system and, ultimately, the character of the time domain response, the
equation 1 + GH(s) = 0 is known as the characteristic equation.

From the characteristic equation it is apparent that the term GH(s) contains all the
information concerning the location of the closed-loop poles (GH(s) is understood to
represent the transfer function of all of the elements in the loop between the error signal
(E) and the feedback signal (B)). The function GH(s) is called the loop transfer function or
open-loop transfer function and is denoted by either GH{s) or B(s)/E(s), as shown in
Figure 1-9. This note uses the notation GH(s) and refers to it as the open-loop transfer
function.

H ;-

Bis
GH{s) = G;GH|s| = o FOR SWITCH IN “TEST” OR OPEN POSITION (THEREFORE THE
E(s) NAME “OPEN-LOOP TRANSFER FUNCTION™)

ALSO: B(s) = E G} G2 H(s} FOR SWITCH IN EITHER “TEST" OR "NORMAL" POSITION

Bis) _
E(s’ G1 G2 H(S)

=



At this point it is worthwhile to recognize that G(s) and Hi(s) are themselves generally ratios

of polynomials in s. G(s) and H(s) can therefore be represented by:

Gl) = 2. o by - )

Gals) H(s)
where the subscripts n and d indicate the numerator and denominator portions of G{s)
and Hys), respectively. If the closed-loop transfer function is reformulated in terms of the
numerator and denominator of G{s) and H(s) we have:

Gn(s) Grl8)Ha(s)

s Gis) Gals) i G(s)Ha(s)

Rs) 1 + GHE) _1 + Gul9)Hi(s) T Gals)Hals) + Guls)Hls)
Gals)Hq(s) Guls)Ha(s)

The objective of expressing the closed-loop transfer function in this manner is to illustrate
that the term 1+ GHys) itself has poles and zeros, and that it is the zeros of this term that
determine the poles of the closed-loop transfer function. It is also worth noticing that the
zeros of the closed-loop transfer function are the roots of the equation Gx{s)Ha(s) = 0.

3-2.3: Nyquist Diagrams

FIGURE 1-10.

it was Nyquist's observation that the frequency response of the open-loop transfer
function (i.e. GH{jw)) can be used to determine if there are any zeros of the term

1 + GHs) (and therefore poles of the closed-loop transfer function) in the right half of the
s-plane. To make this determination, GH(jw) is first plotted on a two-dimensional
Cartesian coordinate system whose ordinate is the imaginary part of GH(j«) and
abscissa is the real part of GH(jw). The complex conjugate of the frequency response
curve is then plotted on the same graph, as shown by the dashed line in Figure 1-10a.

The next step is to establish a vector V4 whose tail is affixed to the point -1 + jO. If the
head of the vector is then placed anywhere along the curve of GH(jw), the vector then
represents the quantity 1 + GH(jw), as illustrated in Figure 1-10b.

NYQUIST DIAGRAM
IN RECTANGULAR
COORDINATES

Ilm
- -

ys - ”
U4 ~\ '(

Re

Vi = 1 + GHjw)

GH(jw)

a. Plot of Open-Loop Frequency Response and
Its Complex Conjugate.

b. Vector Representation of the Quantity 1 + GH{jw).




FIGURE 1-11.

NYQUIST DIAGRAMS
SHOWING

a. STABILITY,

b. INSTABILITY AND
c. CONDITIONAL
STABILITY

16

AS ILLUSTRATED, THE SYSTEM IS STABLE.

HOWEVER, IF THE GAIN IS INCREASED SO
THAT THE AREA SHADED IN BLUE
ENCLOSES THE -1 + jO POINT, THEN

N = 2, AND THE SYSTEM IS UNSTABLE

ALSO, IF THE GAIN IS DECREASED SO
THAT THE AREA SHADED IN GRAY
ENCLOSES THE -1 + jO POINT, THEN N
= 2, AND THE SYSTEM IS AGAIN
UNSTABLE

THEREFORE BY EITHER INCREASING OR
DECREASING THE GAIN, THE SYSTEM
BECOMES UNSTABLE (I.E.,THE SYSTEM IS
CONDITIONALLY STABLE)



3-2.4: Nyquist’s Stability Criterion (Nyquist diagram)

At this point, Nyquist's Stability Criterion states that as the head of the vector traces the
GH(jw) curve in the direction of increasing positive frequency, the net number of
complete rotations N is equal to the number of poles P, of the term 1 + GH(s) in the
right half of the s-plane minus the number of zeros Z, of the term 1 + GH(s) in the right
half of the s-plane. That is:

N=2Z-P

where N is positive for clockwise rotations and negative for counterclockwise rotations.
We therefore know that a system is stable only if N = -P,. It is a general consensus that
for most real systems P, = 0 and, therefore, N = Z,. When this assumption is true, the
condition for stability can be restated as: a system is stable if and only if N = 0.

Figure 1-11 illustrates examples of systems which are stable, conditionally stable, and
unstable.

3-2.5: Magnitude and Phase Contours

FIGURE 1-12.

The Nyquist diagram can also be used to evaluate the closed-loop frequency response
from the open-loop frequency response if the system being analyzed has unity feedback.
For H(jw) = 1 the closed-loop transfer function for real frequencies becomes:

Clw) __Gljo)
R{jw) 1 + G(jw)

If another vector V, is added to the Nyquist diagram so that it projects from the origin
and meets with the vector V4 at the curve of G{jw), then the closed-loop transfer function
can be represented by the ratio of Vz/V,, as shown in Figure 1-12.

Useful tools for evaluating the performance of a unity-feedback control system are
magnitude contours (often referred to as M-contours). A magnitude contour is a locus of
points for which the ratio of the magnitudes of Vy and V3 is a constant. When plotted on
the Nyquist diagram, a magnitude contour will appear as a circle (except when

[Va2)/|V4| = 1.0), as shown in Figure 1-13. When the open-loop transfer function is plotted
on a Nyquist diagram with magnitude contours, the maximum gain of the closed-loop
transfer function can be identified as the value of the magnitude contour which is tangent
to the plotted curve, as shown in Figure 1-14. A similar diagram can also be constructed
for constant values of phase difference between V4 and V,. Plots of constant phase are
called phase contours or N-contours.

EVALUATION OF
CLOSED-LOOP
FREQUENCY
RESPONSE FROM
OPEN-LOOP
FREQUENCY
RESPONSE (UNITY
FEEDBACK)

(-1 +jo)

V, =1+ GH{jw)

V; = GH(jw)
FOR H{jw) = 1

Vs =1+ Gljw)

V, = Gljw)

y Gljw
THEREFORE: % = L’ ~ CLOSED-LOOP FREQUENCY RESPONSE FOR A UNITY FEEDBACK
v 1+Gle)  contROL SYSTEM




FIGURE 1-13.
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From Figure 1-14 it can be seen that as the curve of the open-loop frequency response
approaches -1 + jO, the maximum gain of the closed-loop frequency response
approaches infinity (for either unity or nonunity feedback). It can be shown that the
movement of the open-loop frequency response toward -1 + jO is directly related to the
movement of the closed-loop poles toward the right half of the s-plane, therefore causing
the system to become less stable.

3-2.6: Bode on Stability

18 .~

When H. Bode published his paper, “‘Relations Between Attenuation and Phase
inFeedback Ampilifier Design''? in 1940, he noted that for a system to be absolutely stable
it can only cross the negative real axis between the origin and -1 + jO. According to
Bode, crossing the negative real axis anywhere else produces a system which is either
unstable or conditionally stable; neither of which is generally desirable.

Bode's statement is much easier to interpret if the scale of the Nyquist diagram is
changed from rectangular coordinates to polar coordinates, as shown in Figure 1-15. The
-1 + jO point then represents a magnitude of 1 and a phase of -180 degrees. Using a
polar Nyquist diagram, Bode's observation can be restated as: for a closed-loop system
to be absolutely stable, the phase of the open-loop frequency response should not
exceed 180 degrees until its magnitude becomes less than one.

* "“Relations Between Attenuation and Phase in Feedback Amplifier Design,” Bell System Tech. J., 19, 421-454
(July 1940).




FIGURE 1-14.

DETERMINING THE
MAXIMUM GAIN OF
THE CLOSED-LOOP
FREQUENCY
RESPONSE OF A
UNITY-FEEDBACK
CONTROL SYSTEM

(-1 +jO

FIGURE 1-15.
NYQUIST DIAGRAM
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COORDINATES
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3-2.7: Gain Margin and Phase Margin

Bode also explained that an open-loop frequency response curve which just met this

criterion would rarely produce a stable system since any small variations in the system’s

performance would place the response in an unstable region. He therefore suggested

that a certain amount of margin should be allotted for both the phase and gain values as

they approached the point representing a magnitude of 1 and a phase shift of -180

degrees. These margins are now standard performance parameters known as the phase

margin and gain margin.

Phase margin is defined as 180 degrees minus the absolute value of the phase of the

open-loop frequency response at the point where the magnitude of the open-loop

frequency response (i.e., the open-loop gain) is equal to one. That is: ‘

phase margin = 180 - | £ GH{jw)| where |GH(jw)| = 1

Gain margin is defined as the reciprocal of the open-loop frequency response gain at the
point where the phase of the open-loop frequency response is equal to minus 180
degrees. That is:

gain margin = where £ GH(jw) = -180 degrees

1
|GH{je)] |
The gain margin therefore represents the amount the open-loop gain can be increased |
before it reaches a magnitude of 1. Examples of gain margin and phase margin are |
shown in Figure 1-16.

The importance of the gain and phase margin can be fully appreciated when they are

compared with, and shown to correlate with, the time domain parameters of the step

response. For example, for a system whose response characteristics are dominated by a

pair of complex poles (a very common case), the following relationships can be 1
observed. An increase or decrease in the system'’s frequency independent gain' will

cause both the gain margin and phase margin to decrease or increase, respectively. For i
the case in which the gain is increased, the following events will occur:

¢ the gain margin and phase margin will decrease

¢ the maximum overshoot will increase

¢ the rise time will decrease |
¢ and, in some cases, the steady-state deviation will decrease |

From this series of interactions it can be seen that the development of a control system is

generally a trade-off between the desired performance characteristics. Athough each |
control system has unique requirements, minimum acceptable levels of gain margin and

phase margin are typically 2 (or 6 dB)2 and 30 degrees, respectively.

B

1 Frequency independent gain is also referred to as proportional ampilification and is represented by the
variable K. A more detailed explanation is provided in the discussion of the root locus diagram, Section 4-4.

2 dB represents a unit of comparison known as the decibel. It is calculated for both voltage and power ratios
with respective formulas for each being: dB = 10 log (power ratio} and dB = 20 log (voitage ratio). See
Hewlelt-Packard Application Note 243, The Fundamentals of Signal Analysis, p. 5, for further details.
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In addition to gain margin and phase margin, there are several other performance
quantities such as the system type and steady-state error coefficients which can be
extracted from a Nyquist diagram. Unfortunately, a complete description of these
quantities is beyond the scope of this document (several references for further study are
listed at the end of this note). It can be assumed, however, that the key performance
characteristics of a control system can be adequately characterized with a Nyquist
diagram.

One shortfall of the Nyquist diagram is the difficulty encountered when attempting to
predict the effects of changes to a control system. Most alterations (other than a change
in frequency independent gain) require a significant number of calculations, or a new
measurement, to accurately obtain the correct Nyquist diagram. As a result, several other
analysis techniques were developed to make the design and analysis of a control system
easier. These are discussed in detail in the following chapter.

er 4: More Tools for and I

There is perhaps no design tool which has gained as much popularity as the diagram
which Bode presented in his 1940 paper, ‘'Relations Between Attenuation and Phase in
Feedback Ampilifiers.” This chapter looks at the famous Bode diagram and two other
popular design and analysis tools: the Nichols diagram and root locus diagram.

4-1: The Bode Diagram

The Bode diagram is similar to the Nyquist diagram in that it also represents a piot of the
open-loop frequency response. However, the Bode diagram considers the gain and
phase of the response separately by providing a plot of each versus frequency. The plot
of open-loop gain versus frequency is called the loop gain characteristic and the plot of
open-loop phase versus frequency is called the loop phase characteristic, as shown in
Figure 1-17.

Bode diagrams use logarithmic units (i.e., dB) for gain and logarithmic scales for
frequency; phase is the only parameter represented linearly. The use of logarithmic scales
and units provides the Bode diagram with three key advantages. First, by displaying gain
in units of dB, a much wider range of gain levels can be displayed on a single plot.
Second, the effect on the open-loop frequency response of adding a new component in
a control loop can be caiculated through simple addition rather than multiplication. That
is, by plotting the frequency response of a new component on the same Bode diagram
as the original response, the frequency response of the new system can be calculated by
graphically adding the two plots. Third, the logarithmic scales and units facilitate a
technique for quickly estimating the frequency response of an analytic transfer function.
This last point is a major topic of Bode's paper. In his paper, Bode presented a relatively
simple set of procedures for constructing a set of curves which would closely estimate the
actual frequency response of a transfer function without ever actually calculating or
measuring the response.

An equally powerful tool was the ability to apply Bode’s construction procedures in
reverse. That is, to obtain information about the analytic transfer function from the
measured frequency response.
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4-2: Stability and the Bode Diagram

The Bode diagram also provides a simple check for stability. According to Bode's
interpretation of Nyquist's Stability Criterion, for a system to be absolutely stable, the loop
gain characteristic must be less than one before the loop phase characteristic exceeds
(becomes more negative than) 180 degrees. On a Bode diagram, this means the
frequency at which the loop gain characteristic becomes equal to 0 dB (i.e., the gain
crossover frequency) must be lower than the frequency at which the loop phase
characteristic becomes equal to -~180 degrees (i.e., the phase crossover frequency).

The phase margin, gain margin, and open-loop bandwidth' of a system can also be read
directly from the Bode diagram, as shown in Figure 1-17.

One of two disadvantages of the Bode diagram is that there is no technique for directly
relating the open-loop frequency response to the closed-loop frequency response (as was
possible with the magnitude and phase contours of the Nyquist diagram). However, the
frequency response information from a Bode diagram can be directly transferred to a
Nyquist or Nichols diagram to evaluate the closed-loop frequency response. (It is
important to note that a reverse exchange of information, that is, from a Nichols or
Nyquist diagram to a Bode diagram, may not be possible due to the loss of frequency
information in both the Nichols and Nyquist diagrams.)

A second disadvantage of the Bode diagram is its limited ability to verify the stability of
control systems which are conditionally stable. Fortunately, conditionally stable systems
are rarely designed intentionally and can be analyzed by transferring the frequency
response data to a Nyquist diagram if necessary.

4-3: The Nichols Diagram

The Nichols diagram (also known as the log magnitude-angle diagram) is essentially a
combination of the Nyquist and Bode diagrams. It is conceptually similar to the Nyquist
diagram in that it plots the magnitude of GH{jw) versus the angle of GH(jw) as a
function of frequency (w) on a single graph, as shown in Figure 1-18. Its structure,
however, more closely resembles a Bode diagram in that it uses a rectangular coordinate
system and scales gain in units of dB.

The Nichols diagram incorporates some of the advantages provided by the Bode and
Nyquist diagrams into a single graph. By plotting gain versus phase, the Nichols diagram
allows the construction of magnitude and phase contours similar to those used on the
Nyquist diagram. However, by scaling the gain in units of dB, a single set of contours
can be applied over a much broader range of gain levels. A single Nichols diagram can
therefore provide a direct readout of the closed-loop frequency response (of a unity
feedback control system) for a much broader range of open-ioop gains. Nichols diagrams
which have a large set of magnitude and phase contours drawn on them are often called
Nichols charts.

1 Open-loop bandwidth is defined as the frequency span between 0 Hz and frequency at which the gain of the
open-loop frequency response is equal to 1.
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Gain margin and phase margin can also be read directly from the Nichols diagram.
However, to obtain the open-loop bandwidth, the gain crossover frequency must be
evaluated while the plot is being constructed, and then marked on the graph, as shown
in Figure 1-18.

The main disadvantage of the Nichols diagram is the difficulty in plotting GH(j«) directly
from the transfer function. Unlike the Bode diagram, there is no simple set of rules which
provides a quick estimation of a transfer function’s frequency response. It is therefore
difficult to predict the effect of a compensation circuit on the system's performance.

The Nichols diagram is also limited in its ability to verify the stability of conditionally stable
systems. However, like the Bode diagram, the frequency response information can be
transferred to the Nyquist diagram for analysis.
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4-4: The Root Locus Diagram

26~

The root locus diagram (or root locus plot) was developed by W.R. Evans and presented
in his 1950 paper, “Control System Synthesis by Root Locus Method!. The root locus
diagram is a departure from the frequency response plotting techniques used by the
Bode, Nichols and Nyquist diagrams. All three of the latter techniques use the frequency
response of the open-loop transfer function, GH(jw), to gain information about the relative
location of the closed-loop poles in the s-plane. The root locus diagram, however, uses
the location of the open-loop poles and zeros in the s-plane to predict the actual location
of the closed-loop poles. Before discussing the root locus diagram further, it is again
necessary to introduce another concept.

The symbol G was previously defined as a transfer function whose gain and phase
characteristics change with respect to the variable s or jw. It can, however, be divided
into two factors: 1) a proportional amplification often denoted as K, which is independent
of s or jw and associated with a dimensioned scale factor relating the units of input and
output; 2) a dimensionless factor often denoted as G which is dependent on s or jw.
Therefore, if K is used as a prefix when expressing a transfer function, it is understood
that K represents a gain value extracted from the transfer function which is independent
of s or jw. For example, if the open-loop transfer function is expressed as KGH(jw), it is
understood that K is the gain portion of GH(jw} which is independent of jw.

The objective of the root locus diagram is to graphically locate values of s which set the

open-loop frequency response equal to -1, that is s such that GH(s) = -1. These values
of s will therefore also represent roots of the characteristic equation 1 + GH(s) = 0 and,
further, represent the location of the closed-loop poles.

The power of the root locus technique is its recognition of the frequency independent
gain of the open-loop transfer function, K of KGH(s). The root locus technique recognizes
that for each value of K there is a unique set of values for s which satisfy the equation
KGH(s) = -1. For example, if K is set equal to 3 in the open-loop transfer function:

K
s(1+0.125s)(1 +0.5s)

then there exists a unique set of values of s, in this case those shown in Figure 1-19a, for
which 3GH(s) = -1 (or alternatively, GH(s) = —1/3). If K is set equal to 4, then there
exists another set of values of s for which GH(s) = -1/4, as illustrated in Figure 1-19b.
This new set of values for s represents the new locations of the closed-loop poles when K
is increased from 3 to 4.

If the unigue set of values for s were calculated for each value of K from zero to infinity
and plotted on the same graph, the result would be a set of lines which represent a locus
of roots to the equation 1 + KGH(s) = O for all possible values of K, as shown in Figure
1-19c¢. This plot is called a root locus diagram.

If root locus diagrams were constructed in this fashion, it would require many calculations
and make the construction of the diagram much too involved to be of practical value, at
least without the aid of a computer. Fortunately, Evans also presented a technique for
graphically estimating the root locus diagram based on the location of the open-loop
poles and zeros in the s-plane. The procedure is relatively simple and it is not uncommon
for people who have mastered the root locus technique to quickly sketch the root locus
diagram based solely on the location of the open-loop poles and zeros (i.e., with virtually
no calculations). A root locus diagram will therefore generally include designators
indicating the position of the open-loop poles and zeros as shown in Figure 1-20.

The root locus diagram is a very powerful design tool since it works directly with the
location of the closed-loop poles in the s-plane. However, the root locus technique can
only be used if the number and location of the open-loop poles and zeros are known. It
is therefore less flexible than the Nyquist or Bode diagrams which need only the
measured open-loop frequency response to predict performance and provide design
information. It does, however, provide more information during the initial design process
and is better suited for the design of complex compensation networks.

KGH{s) =

1 “Control System Synthesis by Root Locus Method," Trans, AIEE, 69, 1-4 (Mar 10, 1950)
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ﬁﬁer 5: Nonlinear SHems

o

The design and analysis tools presented so far have all assumed that the control system
or subsystem being analyzed is linear. Unfortunately, the vast majority of control systems
are actually nonlinear, either by design or by virtue of the components within the system.

There are some very complex analysis tools which deal directly with nonlinearities;
however, a very common practice is to obtain an approximation of the system’s nonlinear
operation which best conforms to a linear response. The approximation can then be used
with the tools presented in the previous chapters.

For example, Figure 1-21a shows a typical gain curve (V. /V,) which is essentially
linear for input voltages less than V, and nonlinear for input voltages greater than V..

If the system characterized by Figure 1-21a is operated within a narrow range of voltages

centered about a voltage V, as shown in Figure 1-21b, then the system will operate over
a linear region of the curve and can be modeled with the linear equation:

Vour = aViu
Vi
Vin

where a is a constant.

if, however, the system operates under the same conditions except at a higher average
voltage V. as shown in Figure 1-21c, then the system is not operating in a linear region
and a linear approximation is required.

Graphically, a linear approximation could be obtained by simply drawing a straight line
through the operating region which best fits the gain curve. This approximation, however,
would not address the distribution of energy throughout the response spectrum due to
the distortion of the output waveform, as shown in Figure 1-21c.

For this type of nonlinearity, a better technique for obtaining a linear approximation of the
system’s gain is to measure only that part of the response spectrum which is at the same
frequency as the input. That is, measure the system gain at the fundamental frequency of
the stimulus and ignore all the other frequency components, including those created by
system nonlinearities. If a series of both gain and phase measurements are made over a
range of frequencies, the results can be plotied to produce a graph of the system’s
frequency response. The resulting frequency response can then be used to generate a
transfer function based solely on the fundamental. Such a transfer function is often called
a describing function and is generally considered a good linearized approximation of a
system with nonlinearities such as harmonic distortion and intermodulation distortion.
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A common technique used to make the measurement described is to stimulate the
system with a swept sine wave source and measure both the stimulus and the response
with narrow bandpass filters which track the frequency of the source. Test instruments
capable of making this type of measurement include network analyzers, frequency
response analyzers, and properly equipped Dynamic Signal Analyzers (DSAs).

It is important to note that for any small change in either the mean voltage V, or the
amplitude of the sine wave itself, the measured frequency response will also change. This
change in measurement result due to changes in the testing conditions is a common
phenomenon associated with most nonlinear devices.

If a nonlinear system is both sensitive to changes in the stimulus signal (as described
above) and operated over a wide range of stimulus levels, then there is typically no one
unique frequency response or describing function which can accurately model the
operation of the system.

As a practical solution to this problem, a nonlinear device is typically tested under
conditions which closely approximate the actual operating conditions of the system. If the
operating conditions themselves do not vary widely, and they can be adequately
simulated during testing, then the resulting measurements are generally assumed to be a
linearized estimation of the device’s operation.

To provide maximum flexibility in obtaining a linearized estimation of a device's operation,
advanced DSAs provide two separate analysis functions for measuring the frequency
response of both linear and nonlinear devices: Swept Fourier Analysis (SFA) and Fast
Fourier Transform (FFT) analysis. More information concerning SFA and FFT analysis as
well as many of the other measurement capabilities provided by DSAs are presented in
Part 2 of this application note.







Part 2: Measurement and Analysis Tools Applied to the Development Process

Historically, a test instrument'’s primary contribution to the development of a control
systemn has been the collection of stimulus and response data. While this is still true,
microprocessor-based Dynamic Signal Analyzers (DSAs) have expanded the role of the
test instrument to include significant contributions in other areas of control system
development, such as modeling and design.

The purpose of the following chapters is to provide a basic introduction to the
measurement and analysis capabilities provided by high performance DSAs, and to
suggest how these tools can be used in the various phases of control system
development.

Chitor 14 Modolini the Develowt Process

In general, it is recognized that the development of a control system typically involves
some unique combination of five distinct processes: model, design, build, test and
analyze. For the purpose of this application note, these five processes are defined as
follows:

Design  determining the combination of physical or theoretical components or
parameters that will produce a desired action or resul.

Model  the process of transforming the observed characteristics of some device or
process into theoretical representations consistent with the analysis/design
technique being used.

Build the physical construction of a system and/or its components.
Test the collection of stimulus and/or response data.

Analyze determining the value of parameters, either physical or theoretical, used to
characterize the action or function of a device. Also establishing the
relationships, if any, between those parameters.

When grouped into a process flowchart, these five processes can be used to model the
development of a control system. A generalized example of a “development process”
model/flowchart is shown in Figure 2-1.

To emphasize the DSA’s ability to contribute throughout the development of a control
system, the following chapters examine the tasks associated with each development
process (with the exception of build) and present the tools provided by DSAs for
accomplishing those tasks. To provide a structured introduction, the chapters are
presented in the following order: Test, Analyze, Model and Design.

FIGURE 2-1.
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Chﬁer 2: Test

There are many tests which conform with the above definition; however, the most
common control system tests are the measurement of a system’s response to a step
change in the input (i.e., the step response) and the frequency response of the system
and/or any of its components.

Instruments which have commonly been used to perform these tests include frequency
response analyzers, network analyzers, waveform recorders, strip-chart recorders, and
storage oscilloscopes. Typical contral system tests often required at least two of these
instruments: one instrument to record time domain data (e.g., the impulse response or
step response) and another to record frequency domain data (e.g., the open-loop or
closed-loop frequency response).

The high performance DSA, however, is a single instrument capable of providing all the
measurement capability needed in the dc to 100 kHz frequency range. Technological
advances allow DSA to assume 1 to 3 basic configurations: a waveform recorder for
direct measurement of time domain data, a frequency response analyzer (i.e. Swept
Fourier Analyzer) for providing frequency domain data, or a Fast Fourier Transform (FFT)
analyzer which also provides frequency domain information.

In addition to providing three analyzers within one test instrument, the DSA also provides
several signal monitoring functions. These functions allow the DSA to automatically
optimize measurement conditions during a test, reducing the need for operator
interaction.

The remainder of this chapter presents the DSA’s basic capabilities for measuring both
time domain and frequency domain data.

Test: the collection of stimulus and/or response data.

2-1: Time Domain Measurements

Time domain measurements require the test instrument to record the reaction of a device
in response to some controlled change in the system’s input. A measurement is generally
considered successful if it records the entire response and allows the operator to examine
both the long term trend of the response and the details of any short term events.

DSAs provide this measurement capability by sampling the signals applied to their inputs
and recording the samples as biocks of contiguous data called time records. How the
time records are stored and how the data within them can be accessed depends on
which of two measurement modes, time capture or time throughput, is used to collect the
data.

2-1.1: Time Capture

Responses which decay to a steady state value within a few time records can easily be
recorded using the DSA'’s time capture mode. The time capture mode stores a limited
number of contiguous time records within the DSA’s internal memory. Once collected, all
the data can be compressed onto a single trace on the DSA's display. Segments of the
compressed data can then be expanded and closely examined on the second trace of
the display, as shown in Figure 2-2.
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2-1.2: Time Throughput
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Occasionally, a device with a very long settling time will require very large amounts of
data to be recorded. In these situations, the DSA’s time throughput mode can be used to
store contiguous time records! directly to a mass storage disc without the need for an
instrument controller. To study a recorded event, time records are recalled from the disc
and presented on the DSA's display.

To ensure that an entire response can be recorded, both time capture and time
throughput provide pre- and post-trigger data recording functions. The pre-trigger
function allows a specified amount of data obtained before a trigger occurs to be
recorded. The post-trigger function allows a specified amount of data to be ignored when
obtained after a trigger occurs.

For systems with very fast response times, the pre-trigger function can be used to record
the steady-state operation of a system just before a step change is introduced.
Alternatively, the post-trigger function can be used to ignore the large amounts of dead
time in systems with very slow response times.

In addition to recording and displaying time domain data, DSAs are also capable of
recalling recorded data and processing it through a Fast Fourier Transform algorithm.
This allows the DSA to provide both time and frequency domain information from one set
of recorded data. This capability can be especially valuable for extracting the maximum
amount of information from tests which can be performed only once, such as destructive
tests.

Virtually all closed-loop control system development requires the frequency response of
the system and/or some of its components to be evaluated by experiment. Unlike most

conventional test instruments, advanced DSAs provide two independent techniques for

measuring the frequency response of a device: Swept Fourier Analysis and Fast Fourier
Transform analysis.

1 If the DSA collects data much faster than the connected disc can record data, or the DSA collects data faster
than it can process the data through its own I/O section, then the time records will not be contiguous. The
rate at which time records can be transferred in a contiguous fashion is referred to as the “‘real-time
bandwidth" of the throughput function. More information on real-time bandwidths is available in
Hewlett-Packard Application Note 243, The Fundamentals of Signal Analysis.



2-2.1: Swept Fourier Analysis

Swept Fourier Analysis (SFA) is a very common measurement technique involving a
swept sine wave source and an integration process which emulates a tracking bandpass
filter, as shown in Figure 2-3. The primary objective of this measurement technique is to
measure the gain and phase shift of a device by measuring only the fundamental
component of the stimulus signal and only the fundamental component of the device's
response signal (the frequencies of the fundamentals are assumed to be the same). A
series of measurements are made at different frequencies to provide a frequency
response based on the fundamental of the stimulus and response signals (i.e. ignoring
any other spectral components including those generated by nonlinearities such as
harmonic distortion).

By using very narrow bandwidths, the effects of nonlinearities such as harmonic
distortion, dc offset and random noise can be minimized. This measurement technique
also allows those types of nonlinearities which are not affected by narrow filter bandwidths
(such as level saturation and frequency shifting of resonances) to be characterized by
either making several measurements at different stimulus levels or by sweeping in both
directions.

To achieve the narrow filter bandwidths required to measure low frequency systems,
DSAs utilize a Discrete Fourier Transform to evaluate the energy within a narrow
frequency span. The transform is evaluated at several points during a sweep with the
center frequency of the analysis corresponding to the frequency of the swept sine source
{thus the term Swept Fourier Analysis). This technique emulates a tracking bandpass filter
with very narrow bandwidths, very good harmonic rejection and excellent de rejection.

An added advantage of using a DSA to make SFA measurements is the availability of
automated measurement functions. By constantly monitoring the signals applied to its
inputs and referencing past measurements, the DSA can automatically:

e adjust its input sensitivity
® reject measurements in which input overloads occurred

e adjust the frequency resolution of the measurement relative to the rate of change in
gain and phase

* repeat a measurement at a given frequency and average the results until an
acceptable variance in the measurement is obtained

e adjust the source level to maintain a constant stimulus or response level

¢ allow the operator to simultaneously monitor the signals applied to the analyzer (in
either the time or frequency domains) and view the current measurement.

2-2.2: Fast Fourier Transform Analysis

Compared to SFA, FFT analysis represents more of a parallel approach to measuring a
device's frequency response. Rather than sweeping a single bandpass filter as the SFA
technique does, the FFT process uses a different form of Fourier integration to create
many adjacent bandpass filters (up to 800 in advanced DSAs), as shown in Figure 2-4.
These filters selectively and simultaneously measure the energy distributed over an entire
frequency span.

A useful analogy is to think of each filter as the bandpass filter of an SFA analyzer.
However, rather than collect new data for each measurement point sweep, the FFT
process uses time records to collect time domain data and then processes the data
through 800 filters simultaneously. This form of parallel processing provides exceptional
measurement speeds. It is worth noting, however, that unlike an SFA measurement, an
FFT measurement does not filter out energy converted to other frequencies by
nonlinearities in the system. Instead, these frequency components (if they are not
coherent with the stimulus) are removed by averaging several measurements.
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One of the most powerful attributes of the FFT measurement technique is that it allows
virtually any type of signal to be used as a stimulus. Common stimulus signals used with
FFT measurements include: actual operating signals, sine wave chirps, fixed sine waves,
random noise, burst random noise, step functions and impulse functions.

This broad range of stimulus signals increases the resources available for characterizing
the operation of a system. Often, selecting the right stimulus signal can provide a better
understanding of nonlinearities present in the system and, in some cases, even reduce
the overall testing time. The following paragraphs cite some of the benefits offered by
certain source types.

An important class of stimulus signals are those stimuli which produce energy at all of the
frequencies being analyzed by the FFT algorithm and do so within one time record.
Stimuli which meet this criteria (such as the sine chirp, random noise, burst chirp and
burst random noise stimuli provided by advanced DSAs) allow the FFT algorithm to
provide frequency response information over the entire frequency span being analyzed
with just one measurement. If any of these stimuli (with the exception of random noise)
are used to test a system which is relatively noise-free and linear, a single time record is
often sufficient data to produce an accurate frequency response.

When testing a nonlinear system, selecting a stimulus signal which approximates the
signals present during normal operation can provide results which more accurately
predict the system'’s operation. The ability to use a random noise stimulus can be very
useful in this respect. For example, random noise superimposed on a dc level often
resembles the signals present in a servo system much more than a sine wave
superimposed on a dc level.

Signals with random amplitude distribution, such as true random and burst random, can
be used to provide an approximation of the frequency response of a system with
amplitude nonlinearities. Because random noise is characterized by a random level
distribution at a given frequency, a random noise measurement produces a frequency
response which represents an average of responses taken at several stimulus levels.
When attempting to measure the frequency response of a device with an amplitude
nonlinearity such as gain compression, a random noise measurement may provide a
better approximation of the device's actual operation than a single swept sine
measurement.

A random stimulus signal can also reduce the effects of nonlinearities influenced by the
direction of a sine sweep. Such nonlinearities often show up as a change in resonance
frequencies corresponding to a change in sweep direction (not to be confused with
skewed responses caused by excessive sweep speed). Since random noise continuously
produces energy over an entire frequency spectrum, the measurement is not affected by
transferring energy from one frequency to another.

Some forms of nonlinearities preclude the use of certain stimulus types. For example,
when testing systems with a significant amount of dead zone or hysteresis, such as large
gear frains, signals such as random noise can be inappropriate. The waveform of a
random signal is typically characterized by many changes in slope and a greater
concentration of lower level voltages than high level voltages. This would create a lot of
noise in a gear train while producing little output. Instead, a sine wave stimulus which
spends more time at higher voltage levels and makes fewer slope transitions may be a
much better overall stimulus choice.

The decision of which stimulus/analysis combination should be used is driven in part by
the known attributes of the device being tested and the kind of information being sought.
For example, several swept sine measurements made at different stimulus levels can be
used to characterize the operation of a device with an amplitude nonlinearity. Alternatively,
an FFT measurement using random noise and averaging can be used to provide a single
frequency response which approximates the device's operation over a range of stimulus
levels.

/37



If the device being tested is essentially linear (at least within the range of amplitudes and
frequencies being tested), the selection of a stimulus/analysis combination is simply a
matter of measurement speed. Any stimulus/analysis combination would be able to
produce accurate results.

It is important to note, however, that before any assumption can be made about a
system'’s finearity, at least two measurements (with variances in the stumuli between them)
must be compared. If the system is found to be nonlinear, it may take several more
measurements to characterize the nonlinearity so that its effect on the operation of the
system can be understood.

It is in response to these measurement needs that advanced DSAs have incorporated the
ability to make time domain measurements, traditional swept sine frequency response
measurements and nontraditional frequency response measurements utilizing virtually any
type of stimulus signal and FFT analysis. With these measurement capabilities, the DSA
provides a total measurement solution for fully characterizing the operation of control
systems.

Ch r 3: Analyze

Analyze: determining the value of parameters, either physical or theoretical, used to
characterize the action or function of a device. Also, establishing the
relationships, if any, between those parameters.

This definition of analysis, when applied to classical control theory, generally implies the
evaluation of parameters such as gain margin, phase margin and settling time.

Typically, these parameters are not evaluated by the test instrument. More often than not,
they must be derived from the measured data and, in some cases, derived from several
sets of data. With respect to extracting useful information from measured data, the
Dynamic Signal Analyzer represents one of the most powerful measurement and analysis
tools available to the control systems engineer.

The DSA's major contributions toward analyzing data center around three major
functions: waveforrm math, curve fitting and coherence. The following sections briefly
describe each function and present typical applications.

3-1: Waveform Math

Waveform math provides the ability to use standard math operators such as +, -, x and
+ between two displayed data traces, or perform any of the other math functions shown
in Table 2-1 on individual traces. Waveform math therefore allows many of the control
system calculations which have historically been done graphically, with plotted data, to be
performed within the analyzer. This not only reduces calculation times, but also preserves
the full resolution and accuracy of the original data. The following examples present only
a few of the many possible applications for the waveform math function.

A very straightforward application of waveform math is the extraction of the normalized
value of maximum overshoot from a step response measurement. The left half of Figure
2-5 shows a measured step response with a Y-axis marker positioned on the steady-state
value. Using waveform math, the display can be normalized by simply specifying the +
operator and entering the response’s steady-state value. The normalized value of
maximum overshoot can then be read directly from the X-axis marker as shown in the
right-half of Figure 2-5.
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TABLE 2-1.

WAVEFORM MATH
FUNCTIONS
AVAILABLE WITH
ADVANCED
DYNAMIC SIGNAL
ANALYZERS

FIGURE 2-5.

USING WAVEFORM
MATH TO
NORMALIZE A STEP
RESPONSE.
MARKER ON
NORMALIZED
DISPLAY READS
OUT NORMALIZED
PEAK OVERSHOOQT
DIRECTLY

v
RECIPROCAL
NEGATE

DIFFERENTIATE

MULTIPLY BY jw
MULTIPLY BY jw -1

TH1-T)
REAL PART

FFT
FET1

COMPLEX
CONJUGATE

LOG OF DATA

MARKER
WVALUE
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Using the normalized display, the settling time can also be quickly evaluated. The upper
and lower boundries relative to the steady-state value can be clearly marked by simply
programming the Y-axis markers to those values {i.e., for a restriction of +5% of final
value, the markers can be set to 1.05 and 0.95). The X-axis marker can then be used to
display the settling time, as shown in Figure 2-6. The information shown on the display of
the DSA, including trace, display grid and annotation, can then be sent directly to a
digital plotter to provide hardcopy documentation.

The DSA’s waveform math function can also be used with frequency domain data to
execute much mare complex calculations. For example, two sets of frequency response
data representing the forward gain path and feedback path of a system could be quickly
combined to predict the system'’s open-loop frequency response.

Combining frequency responses can be accomplished by simply displaying one set of
frequency response data in one display trace and a second set of frequency response
data in the other display trace. The operator then selects an active trace, the multiply
operator and the second operand (in this case the nonactive display trace)!. The result of
the calculation is then displayed in the active trace, as shown in Figure 2-7.
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The resultant frequency response can then be presented in virtually any desired scale
and in one of many display formats. For example, the derived frequency response can
be displayed in a Bode plot, as shown in Figure 2-8a, to allow the gain margin, phase
margin and open-loop bandwidth to be quickly read from the X-axis markers. The
frequency response can then be displayed on a Nyquist plot, as shown in Figure 2-8b, to
provide a quick check of the system's absolute stability.

Since either display trace may contain either current measurement data, calculated data,
or data recalled from a mass storage device (such as a magnetic disc or tape drive),
waveform math can be used to combine many frequency response data sets. This
capability could be used to predict the frequency response of a system from a library of
previously stored component frequency response data.

Waveform math also makes it possible to easily calculate the open-loop frequency
response of a system from a closed-loop measurement. Typically, a stimulus signal is
injected into the loop and, when using FFT analysis!, the frequency response between
the stimulus signal § and the response to the stimulus signal at the point Y is measured

FIGURE 2-8.
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' When using an FFT analyzer to derive the open-loop frequency response of a closed-loop system, the ratio
Y(jw)!S(jw) or Z(jw)/S(jw) is measured rather than Y(jw)/Z(jw) (the ratio commanly measured with
frequency response analyzers) to prevent a bias error from degrading the calculation. The bias error can be
avoided and is typically not a significant factor when using SFA analysis.
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3-2: Curve Fitting

as shown in Figure 2-9. The open-loop frequency response of the system can then be
calculated by evaluating the equation:
Tyw)
1-T(jw)
where T(jw) is the measured frequency response Y(jw)/S(jw).

This equation can be easily evaluated using either a series of waveform math calculations
or by using the single waveform math operator T/(1-T) as shown in Figure 2-10.

open-loop frequency response =

Curve fitting is a function which estimates an equation whose solution, when plotted, will
be identical to the measured frequency response. Depending on the curve fitter available
with a given DSA, the derived equation may be expressed to the operator in one of three
formats: a table of poles and zeros, a table of poles and residues (i.e., partial fraction
expansion form), or a ratio of polynomials.

Advanced DSAs are usually equipped with one of two curve fitters, either a basic single-

degree-of-freedom (SDOF) curve fitter or a multiple-degree-of-freedom (MDOF) curve fitter.

SDOF curve fitters provide polefresidue information for each resonance identified by the
operator, as shown in Figure 2-11a. MDOF curve fitters represent a more versatile
generation of curve fitters which can automatically process an entire spectrum; using up
to 40 poles and 40 zeros in the estimation process (see Figure 2-11b). The latter curve
fitters are typically accompanied by a synthesis capability which allows the pole/zero
information to be quickly converted to a pole/residue format or a polynomial format as
shown in Figure 2-12.

For extracting information from measured data, the curve fitting function is an

exceptionally powerful analysis tool. Its applications, however, lie mostly in the area of
modeling and design and are discussed in chapters 4 and 5, in Part Two, respectively.
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3-3: Coherence

The coherence function is a statistical quantity whose dimensionless values represent the
fraction of system output power directly related to the input. Values of coherence are
used in two primary applications: 1) as a measure of the quality of a frequency response
measurement and 2) to discriminate between those response signals which are directly
related to (coherent with) the stimulus signal and those response signals which are not
directly related to (not coherent with) the stimulus signal.

When more than one average is taken per measurement point, the coherence function
produces a value from 0.0 to 1.0 for each point. (For example, when using SFA, a value
of coherence will be produced for each step in the sweep if the analyzer is programmed
to average two or more measurements per step.) A coherence value of 1 indicates that
all of the output power (response) is coherent with the input power (stimulus) but not
necessarily a result of the input power. A coherence value of 0 indicates that virtually
none of the output power is coherent with the input power.

Since a low value of coherence indicates that only a small percentage of the response is
directly related to the stimulus, it is reasonable to assume that the corresponding
measurement data may not accurately reflect the transfer of energy through the tested
device. In this respect, the coherence function acts as a qualitative tool which can be
used to verify the general quality or credibility of a measurement. Typical causes of low
coherence include very poor signal-to-noise ratios, the presence of noncoherent signals
generated within the tested device or, when using FFT analysis, leakage due to improper
window selection or insufficient time record length!.

Coherence can also be used to separate the output power spectrum into two power
spectra: the coherent power spectrum which represents the output power directly related
to the input and the noncoherent power spectrum which represents the output power not
related to the input.

Both the coherent and noncoherent power spectra have been used in several interesting
applications. One example is the use of the noncoherent power spectrum by a disc drive
manufacturer to monitor the disturbance signals within the read/write head positioning
servo. By using a random stimulus signal, the periodic signals within the control loop
(such as those caused by cooling fan vibration, power supply ripple bleeding into the
control loop or an off-centered reference track on the disc) appear in the response as
noncoherent signals. By correlating the known characteristic frequencies of these signals
with the spectral components of the noncoherent power spectrum, the amplitudes of
these noncoherent signals were effectively monitored, providing more information about
the overall health of the pasitioning system. A simplified drawing of the measurement
setup and an actual plot of the noncoherent power spectrum are shown in Figure 2-13.

' Complete definitions of leakage, window functions and time records are available in Hewlett-Packard
Application Note 243, The Fundamentals of Signal Analysis.
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Since all of the data needed to calculate the noncoherent power spectrum is provided
with each frequency response measurement, it can be provided without increasing
measurement time. The ability to increase the information obtained from each
measurement can be especially valuable in situations where testing time is considered a
valuable commaodity, such as production line testing. A copy of a production test report
dumped directly to a digital plotter by a DSA is shown in Figure 2-14.

The coherent and noncoherent power spectra mentioned above can easily be obtained
by using waveform math to calculate the following formulas:

coherent power spectrum = (output power spectrum) X (coherence spectrum)
noncoherent power spectrum = (output power spectrum) x (1 - coherence spectrumy)

where: coherence spectrum refers to the collective set of coherence values which exist
when more than one average is taken and (1 - coherence spectrum) implies the
subtraction of each value of coherence in the coherence spectrum from 1.

The output power spectrum, like the coherence function, is a normal by-product of a
DSA'’s frequency response calculations and can be viewed at any time.

More applications for the coherence function (as well as a detailed definition) are
provided in Hewlett-Packard Application Note 245-2, Measuring the Coherence Function
with the HP 3582A Spectrum Analyzer.

Model: the process of transforming the observed characteristics of some device or
process into theoretical representations consistent with the analysis/design
technique being used.

This definition, when applied to classical control theory, generally implies the creation of
equations which accurately predict the action or function of some device in the frequency
or time domains. Since most design work is done in the frequency domain, the modeling
process can further be generalized as the development of frequency domain equations,
typically in a pole/zero format, which accurately predict a device's frequency response.

4-1: Curve Fitting Applied to the Modeling Process

As an aid in accomplishing this task, the MDOF curve fitter offered with high performance
DSAs represents one of the most powerful tools ever offered by a test instrument.

By simply displaying a measured frequency response and activating the MDOF curve
fitter, the DSA automatically provides an estimate of the s-plane poles and zeros and the
gain required to produce the displayed response, as shown in Figure 2-15.

The use of a curve fitter to extract pole/zero information from a measured frequency
response represents a significant advancement over the graphic techniques commonly
used to derive pole/zero information. The curve fitter has the advantage of utilizing the full
frequency and amplitude resolution of the measured data and, in many cases, provides
the pole/zero information in the time normally required to obtain and prepare hardcopy
plots for graphic interpretation.
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FIGURE 2-16.
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b. Curve Fitting the Measured Frequency Response of the Motor and Pre-amp to Produce an Estimate
of the Associated Transfer Function (Poles, Zeros and Gain). The Upper/Lower Display Format is
Used After the Fit to Compare the Measured Frequency Response with the Frequency Response of
the Estimated Transter Function.




FIGURE 2-16. (CONT.)
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Amongst other applications, the pole/zero data obtained from frequency response
measurements can be used to either verify the poles and zeros used in an existing
analytical model or create an initial model of a device with unknown characteristics. An
example of the latter application is illustrated in Figure 2-16. In this example, a transfer
function is generated for a combination armature controlled motor and pre-amplifier (of a
position control system) whose specifications, such as motor inertia and forward gain, are
unknown.

To obtain the motor/pre-amp's transfer function, the frequency response of the motor/pre-
amp is first measured using a DSA equipped with a MDOF curve fitter. The curve fitter is
then activated resulting in a table of poles and zeros. The pole/zero information is
automatically synthesized to provide a frequency response which can be compared with
the measured frequency response, as shown in Figure 2-16b. The pole/zero data is then
used to generate a transfer function of the motor/pre-amp as illustrated in Figure 2-16c.
The derived transfer function can now be added to the system block diagram to
complete the system model, as shown in Figure 2-16d.
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4-2: Frequency Response Synthesis Applied to the Modeling Process

Another useful modeling tool provided with advanced DSAs is the frequency response
synthesis function (commonly referred to as the synthesis function). DSAs equipped with
this function allow analytical equations (e.g., transfer functions) to be entered directly into
the analyzer. The DSA then calculates and displays the frequency response associated
with the transfer function, as shown in Figure 2-17.

Equations may be entered in one of three formats: pole/zero, pole/residue (i.e., partial
fraction expansion), or ratio of polynomials in s. In addition to providing a conversion
function for transferring data from one format to another, high performance DSAs also
provide direct transfer of data between the synthesis and curve fitting functions.

In the modeling process, the synthesis function is commonly used in conjunction with the
curve fitter. For example, if the curve fitter produces more detailed information than
required for a given application, the pole/zero data can be transferred to the synthesis
function where insignificant poles and zeros can be deleted. The frequency response of
the remaining poles and zeros can then be synthesized and compared to the measured
frequency response. This allows the engineer to verify that the remaining poles and zeros
sufficiently model the measured frequency response.

Another use of the synthesis function utilizes modeling information to optimize the initial
testing of systems. By synthesizing the frequency response of a system which has never
been tested (i.e. the model has been developed from data sheet information or initial
design parameters), an initial estimate of the system’s frequency response can be
obtained. This information can then be used to estimate the transducers and stimulus
levels required to properly test the system, reducing test time and, in many cases,
preventing damage to the system or device being tested.
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These examples illustrate only a few of the applications in which the DSA's precision
measurement hardware and computational power contribute to the modeling process. By
providing analysis tools such as frequency response synthesis and curve fitting, the DSA
provides a new level of support for meeting the complex as well as the routine challenges
of modeling today’s control systems,

Design: determining the combination of physical or theoretical components or parameters
that will produce a desired action or resuft.

The design process, as defined above, occurs throughout the development of control
systems. It begins with the initial conception of a system and becomes one of an
unpredictable sequence of development processes which ultimately result in a refined,
fully operational control system. Typically, the purpose of most design work (after
conceiving the initial system) is to generate modifications to the initial system which will
allow it to comply with the original design goals or specifications. Modifications can range
from simple changes in component values to the design and addition of complex
compensation networks.

§-1: Applying Frequency Response Synthesis, Waveform Math and Curve Fitting
___to the Design Process

As a design tool, DSAs offer several data processing functions which can aid the
engineer in choosing combinations of components which will accomplish a desired task.
For example, the frequency response synthesis function' can be used to predict the
frequency response of compensation networks before they are actually built. The
waveform math function? can then be used to predict the effects of a synthesized
compensation network on a system’s open-loop frequency response or predict the
system’s new closed-loop frequency response. It can even be used to estimate the step
or impulse response of the modified system before the compensation network is built.

To illustrate the use of the DSA's data processing functions in the design process, the
following case study examines the development of a simple compensation network for a
motor speed controller.

Initial measurements on the motor speed control were taken with the control loop closed
and the system’s open-loop gain set approximately 8 dB below the desired operating
level. The closed-loop measurement indicated a sharp resonance at approximately 87.5
Hz, as shown in Figure 2-18a. The open-loop frequency response was then calculated
from the measurement of Y{jw)/S(jw) using the T/(1-T) calculation, as shown in Figure
2-18b.

The magnitude of the resonance at 87.5 Hz indicated that an 8 dB increase in the gain
would cause the open-loop gain at 90 Hz to exceed 0 db with the phase less than -180
degrees, creating an unstable operating condition, as shown in Figure 2-19. Therefore, to
achieve the desired increase in the system’s open-loop gain, a compensation network
was added to the system to reduce the level of the 87.5 Hz resonance.

The compensation network, in this case a two-pole low-pass filter, was developed by
entering an initial estimate of the pole locations, gain and delay into the pole/zero table of
the DSA's frequency response synthesis function. The synthesized frequency response of
the low-pass filter was then displayed on the CRT of the DSA, as shown in Figure 2-20.

1 See section 4-2 for a brief description of the frequency response synthesis function.
2 See section 3-1 for a brief description of the waveform math function.
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FIGURE 2-20.

The frequency response of the speed control system and the synthesized frequency

response of the low-pass filter were then displayed adjacently, as shown in Figure 2-21.
By displaying both frequency responses in this fashion, the low-pass filter pole locations
which provided the best trade-off between level rejection and phase shift could quickly be

determined.
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FIGURE 2-22.

USING WAVEFORM
MATH TO
CALCULATE THE
EFFECT OF THE
LOW-PASS FILTER
ON THE OPEN-LOOP
FREQUENCY
RESPONSE

N\

To verify the visual approximation, the synthesized frequency response of the low-pass
fiter was combined with the open-loop frequency response of the speed control system

using waveform math, as shown in Figure 2-22.

Using the information provided by the pole/zero table and a passive filter design guide,
the component values for the low-pass fitter were determined and a prototype filter
constructed. The frequency response of the prototype was then measured and compared
to the synthesized frequency response, as shown in Figure 2-23.
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With the low-pass filter installed in the forward signal path of the motor speed control, the
open-loop frequency response was again measured and compared to the predicted
response, as shown in Figure 2-24. Finally, the gain of the speed control was raised by 8
dB to provide the desired performance while maintaining reasonable gain margin and
phase margin, as shown in Figure 2-25.
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FIGURE 2-26.

In this example, the low-pass filter provided enough compensation to achieve the desired
system performance. However, for more demanding applications, a lag-lead network
could be added to the system to further improve the system's performance.

When building compensation networks such as the lag-lead network mentioned above,
the DSA's curve fitter can be used to locate the dominant poles and zeros of a system’s
open-loop frequency response, as shown in Figure 2-26. This information can then be
used with design tools such as a root locus plot to select the most advantageous position
for the poles and zeros of the compensation network.

The DSA's curve fitter function can also be used to suggest the location of a
compensation network’s poles and zeros. For example, the pole/zero model of a
“perfect” compensation network can be derived using a combination of the frequency
response synthesis, waveform math and curve fitting functions. First, the frequency
response synthesis function is used to synthesize the “ideal” frequency response for a
system. Waveform math is then used to divide the synthesized response by the system’s
measured frequency response. The result is the frequency response of the cascade
compensation network needed to achieve the “ideal” frequency response for the system.
By curve fitting this resultant frequency response, the DSA supplies the designer with a
table of poles and zeros which will produce that response.
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5-2: Using Display Formats Other Than the Bode Plot

FIGURE 2-27.

By providing a wide choice of coordinate formats, advanced DSAs allow the operator to
observe frequency response data in the display format which best conforms with the
design technique being used. For example, the open-loop frequency response of the
motor speed controller can be displayed in either the Nichols or Nyquist formats as
shown in Figure 2-27.

This rapid exchange of data between display formats not only allows the engineer to

capitalize on the advantages of each display format, it also serves as a convenient way to
bridge communication gaps between engineers accustomed to different display formats.
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By combining the computational power of the microprocessor with the accuracy of
precision measurement hardware, the Dynamic Signal Analyzer has expanded its
functional scope to include contributions in virtually all aspects of control system
development.

In the area of testing, the DSA has provided the facilites for making both time domain
and frequency domain measurements. Using either the time capture or time throughput
measurement modes, the DSA can store large quantities of time domain data. The data
can then be either displayed in the time domain or routed to the FFT processor and
transformed into frequency domain data.

For making frequency domain measurements, the DSA provides both FFT analysis and
Swept Fourier Analysis. This combination of measurement capabilities allows the DSA to
analyze a control system’s response to a wide range of stimulus signals. This capability
can often be used to gain greater insight into the operation of a control system as well as
minimize measurement times.

In addition to providing multiple measurement capabilities, the DSA utilizes the power of
the microprocessor to provide a host of automated measurement aids capable of
optimizing measurement conditions and rejecting undesirable data.

In the area of analysis, the DSA provides functions such as coherence, waveform math,
curve fitting and advanced display formatting as tools for reducing raw data to valuable
information.

In the areas of modeling and design, the DSA’s frequency response synthesis and
advanced analysis functions can be utilized in the development of accurate system
models and effective system designs.

Perhaps the DSA's most significant contribution is that it has brought both advanced
measurement capabilities and powerful analysis tools together in a single instrument. This
consolidation of development tools allows the DSA to provide a great deal of valuable
information—not just data.
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Appendix A: # Glossary

Bandwidth. The interval separating two
frequencies between which both the gain and
the phase difference (of sinusoidal output
referred to sinusoidal input) remain within
specified limits.

Bode diagram. A plot of log-gain and phase-
angle values on a log-frequency base, for an
element transfer function G(jw), a loop
transfer function GH(jw). The generalized
Bode diagram comprises similar plots of
functions of the complex variable s = ¢ + jo
Characteristic equation. Of a feedback
control system, the relation formed by
equating to zero the denominator of a
rationalized transfer function of a closed loop.
Closed loop (feedback loop). A signal path
which includes a forward path, a feedback
path and a summing point, and forms a
closed circuit.

Compensation. A modifying or supple-
mentary action (also, the effect of such action)
intended to improve performance with respect
to some specified characteristic.

Control system. A system in which deliberate
guidance or manipulation is used to achieve a
prescribed value of a variable.

NOTE: It may be subdivided into a controlling
system and a controlled system.

Control system, automatic. A control
system which operates without human
intervention.

Control system, feedback. A control system
which operates to achieve prescribed
relationships between selected system
variables by comparing functions of these
variables and using the difference to effect
control.

Control system, open-loop. One which does
not utilize feedback of measured variables.
Critically damped. Describing a linear
second-order system which is damped just
enough to prevent any overshoot of the output
following an abrupt stimulus. See also
damping.

Critical point. (1) In a Nyquist diagram for a
control system, the bound of stability for the
locus of the loop transfer function GH(j«), the
(-1, jo)point. (2) In a Nichols chart, the bound
of stability for the GH(jw) plot; the intersection
of |GH| = 1 with «GH = -180 degrees.
Damping. (1) (noun) The progressive
reduction or supression of the oscillation of a
system. (2) (adj.) Pertaining to or productive of
damping.

Decibel. In control usage, a logarithmic scale
unit relating a variable x (e.g., angular;
displacement) to a specified reference level xo;
dB = 20 log x/xo.

NOTE: The relation is strictly applicable only
where the ratio x/xo is the square root of the
power ratio P/Py, as is true for voltage or
current ratios. The value dB = 10 log P/P,
originated in telephone engineering, and is
approximately equivalent to the old
“transmission unit”’

Dither. A useful oscillation of small amplitude
introduced to overcome the effects of friction,
hysteresis or clogging.

Error constant. In a feedback control system,
the real number K by which the nth derivative
of the reference input signal is divided to give
the resulting nth component of the actuating
signal.

Frequency, damped. The apparent
frequency of a damped oscillatory time
response of a system resulting from a non-
oscillatory stimulus.

Frequency, gain crossover. On a Bode
diagram of the loop transfer function of a
system, the frequency at which the gain
becomes unity (and its decibel value zero)
Frequency, phase crossover. Of a loop
transfer function the frequency at which the
phase angle reaches + 180 degrees.
Frequency response. In a linear system, the
frequency-dependent relation in both gain and
phase difference, between steady-state
sinusoidal inputs and the resulling steady-state
sinusoidal outputs.

Function describing. Of a nonlinear element
under periodic input, a transfer function based
solely on the fundamental, ignoring other
frequencies.

Function, loop transfer. For a closed loop,
the transfer function obtained by taking the
ratio of the Laplace transform of the return
signal to the Laplace transform of its
corresponding error signal.

Function, output transfer. For a closed
loop, the transfer function obtained by taking
the ratio of the Laplace transform of the output
signal to the Laplace transform of the input
signal.

Function, return transfer. For a closed loop,
the transfer function obtained by taking the
ratio of the Laplace transform of the return
signal to the Laplace transform of its
corresponding input signal.

Function, system transfer. The transfer
function obtained by taking the ratio of the
Laplace transform of the signal corresponding
to the ultimately controlled variable to the
Laplace transform of the signal corresponding
to the command.

Function, transfer. A mathematical,
graphical, or tabular statement of the influence
which a system or element has on a signal or
action compared at input and at output
terminals.

Gain (magnitude ratio). For a linear system
or element, the ratio of the magnitude
(amplitude) of a steady-state sinusoidal output
relative to the causal input; the length of a
phasor from the origin to a point of the
transfer locus in a complex plane.

NOTE: The quantity may be separated into
two factors: (1) a proportional ampiification
often denoted as K which is frequency-
independent, and associated with a
dimensioned scale factor relating the units of
input and output; (2) a dimensionless factor
often denoted as G(jw) which is frequency-
dependent. Frequency, conditions of
operation, and conditions of measurement
must be specified A loop gain characteristic is
a plot of log gain vs. log frequency. In
nonlinear systems, gains are often amplitude-
dependent; see also transfer function.

Gain characteristic, loop. Of a closed loop,
the magnitude of the loop transfer function for
real frequencies.

Gain, closed-loop. The gain of a closed-loop
system, expressed as the ratio of output to
input.

Gain, loop. The absolute magnitude of the
loop gain characteristic at a specified
frequency.

Gain margin. Of the loop transfer function for
a stable feedback system, the reciprocal of the
gain at the frequency at which the phase
angle reaches minus 180 degrees.

NOTE: Gain margin, sometimes expressed in
decibels is a convenient way of estimating
relative stability by Nyquist, Bode, or Nichols
diagrams, for systems with similar gain and
phase characteristics. In a conditionally stable
feedback system, gain margin is understood
to refer to the highest frequency at which the
phase angle is minus 180 degrees.

M-peak. Of a closed loop, the maximum
value of the magnitude of the return transfer
function for real frequencies, the value at zero
frequency being normalized to unity.

Nichols chart (Nichols diagram). A plot
showing magnitude contours and phase
contours of the return transfer function referred
to ordinates of logarithmic loop gain and to
abscissae of loop phase angle.
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Nyquist diagram. A polar plot of the loop
transfer function.

NOTE: The “inverse Nyquist diagram” is a
polar plot of the reciprocal function. The
generalized Nyquist diagram comprises plots
of the loop transfer function of the complex
variables, where s = ¢ + jw and ¢ and w
are arbitrary constants. including zero.
Overdamped. Damped sufficiently to prevent
any oscillation of the output following a step or
impulse input.

NOTE: For a linear second-order system the
roots of the characteristic equation are real
and unequal.

Phase angle, loop. Of a closed loop, the
value of the loop phase characteristic at a
specified frequency.

Phase characteristic, loop. Of a closed
loop, the phase angle of the loop transfer
function for real frequencies.

Phase margin. Of the loop transfer function
for a stable feedback control system, 180 deg.
minus the absolute value of the loop phase
angle at a frequency where the loop gain is
unity.

NOTE: Phase margin is a convenient way of
expressing relative stability of a linear system
under parameter changes in Nyquist, Bode or
Nichols diagrams. In a conditionally stable
feadback control system where the loop gain
becomes unity at several frequencies, the term
is understood to apply to the value of phase
margin at the highest of these frequencies.

Pole. (1) Of a transfer function in the complex
variable s, a value of s which makes the
function infinite. (2) The corresponding point in
the s-plane.

NOTE: If the same value is repeated n times, it
is called a pole of nth order; if it occurs only
once, a simple pole.

Resonance. Of a system or element, a
condition evidenced by large oscillatory
amplitude which results when a small
amplitude of a periodic input has a frequency
approaching one of the natural frequencies of
the driven system.

NQTE: In a feedback control system, this
occurs near the stability limit.

Response, steady-state. Of a stable system
or element, that part of the time response
remaining after transients have expired.
NOTE: The term steady-state may also be
applied to any of the forced response terms:
for example, '‘steady-state sine-forced
response”’.

Root locus. For a closed loop whose
characteristic equation is KG(s)H(s)+1=0, a
plot in the s-plane of all those values of s
which make G(s)H(s) a negative real number;
those points which make the loop transfer
function KG(s)H(s) = -1 are roots.

NOTE: The locus is conveniently sketched
from the factored form of KG(s)H(s); each
branch starts at a pole of that function, with
K = 0. With increasing K, the locus proceeds
along its several branches toward a zero of
that function and, often asymptotic to one of
several equi-angular radial lines, toward
infinity. Roots lie at points on the locus for
which (1) the sum of the phase angles of
component G{s)H(s) vectors totals 180 deg.,
and for which (2) 1/K = |G{s)Hs)|. Critical
damping of the closed loop occurs when the
locus breaks away from the real axis;
instability when it crosses the imaginary axis.
Servomechanism. An automatic feedback
control system in which the controlled variable
is mechanical position or any of its time
derivatives.

Servomechanism type number. In control
systems in which the loop transfer function is:
K(1 +ais+aes?+ ... +as')

S'(1+ bis+bas?+ . .. +bysh)
where K, a, b etc. are constant coefficients,
the value of the integer n.
Stability. For a control system, the property
that sufficiently bounded input or initial state
perturbation result in bounded state or output
perturbations.
Time, rise. The time required for the output
of a system (other than first-order) to make the
change from a small specified percentage
(often 5 or 10) of the steady-state increment to
a large specified percentage {often 90 or 95),
either before overshoot or in the absence of
overshoot.
NQTE: If the term is unqualified, response to a
unit-step stimulus is understood, otherwise the
pattern and magnitude of the stimulus should
be specified.
Time, settling (correction time). The time
required following the initiation of a specified
stimulus to a linear system for the output to
enter and remain within a specified narrow
band centered on its steady-state value.
NOTE: The stimulus may be a step, impulse,
ramp, parabola, or sinusoid. For a step or
impulse, the band is often specified as + 2%.
For nonlinear behavior, both magnitude and
pattern of the stimulus should be specified.
Underdamped. Damped insufficiently to
prevent oscillation of the output following an
abrupt stimulus.
Zero. (1) of a transfer function in the complex
variable s, a value of s which makes the
function zero. (2) The corresponding point in
the s-plane.
NOTE: If the same value is repeated n times, it
is called a zero of nth order; if it occurs only
once, a simple zero.
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