APPLICATION NOTES # APPLICATION NOTE 27 BASIC MICROWAVE MEASUREMENTS The field of microwave measurements can be conveniently divided into four general types: power, impedance, attenuation, and frequency. The versatility of Hewlett-Packard instruments permits you to make all of these measurements with a minimum of equipment. The four basic types of measurements are as follows: * ### I. POWER MEASUREMENTS Power measurements are considered more basic than voltage or current measurements at microwave frequencies, because power does not depend upon the position of measurement along a distributed type transmission line as voltage and current do. The measurement of power is accomplished by means of a bolometer whose resistance changes with rf energy. The resistance change is measured in a bridge circuit such as the Model 430C Power Meter, and used to determine the rf energy. Power measurements can be made on modulated as well as CW signals. In most cases where the modulation rate is high enough so the power meter does not attempt to follow the modulation envelope, the average power of the modulated signal will be indicated. Thus, one-half the peak power of square-waved carriers is displayed. In the case of sine-wave modulation the proper proportion of power to the CW level for the percentage modulation employed is displayed. For pulsed signals a power level proportional to the pulse width and repetition rate is shown. There are two types of bolometers: barretters and thermistors. Barretters have a positive temperature coefficient of resistance (resistance increases with temperature increase) and thermistors have a negative temperature coefficient (resistance decreases with temperature increase). has mounted these bolometer elements so that when they are used in conjunction with the Model 430C, power delivered from both waveguide and coaxial systems can be measured. For maximum convenience and versatility, @ has designed the following bolometer mounts for measuring rf power. | Model | Frequency
Range | Characteristics | |---|-----------------------|--| | @475B
Tunable
Bolometer
Mount | 1000 to
4000 mc | Matches 50 ohm
line to 100 or
200 ohms | | \$\pi476A\$ Universal Bolometer Mount | 10 to
1000 mc | No tuning required. Swr less than 1.25 | | @477B
Coaxial
Thermistor
Mount | 10 to
10,000 mc | Broad band,
low swr; no
tuning | | ₩ 485
Waveguide
Detector
Mount | 2600 to
12, 400 mc | Full coverage,
tuned barretter
mount | | 6487B
Waveguide
Thermistor
Mount | 4000 to
40,000 mc | Full coverage,
no tuning,
1.5 swr
G-X, 2 swr
K-R | The Model 430C Power Meter has 5 power ranges 0.1, 0.3, 1.0, 3.0, and 10 milliwatts. Power levels from 10 milliwatts to 10 watts can be measured with the Model 434A Calorimetric Power Meter which operates from dc to 12.4 kmc and does not require external bolometers. Also, Directional Couplers and Attenuators can be used with the 430C and 434A Power Meters to measure power levels greater than 10 watts, as long as the maximum power limitations of the couplers and attenuators are not exceeded. ^{*} Information on techniques for standards measurements is available in Application Note 21, Microwave Standards Prospectus. Typical Power Measurement Systems Figure 1 #### IL IMPEDANCE MEASUREMENTS The measurement of impedance is perhaps the most frequent and most important measurement at microwave frequencies. Since impedance is a measure of reflected energy by the load, information concerning a load can be obtained if the reflection coefficient is determined. There are two systems which can be used to quickly and conveniently evaluate reflection coefficients and impedances; the slotted line system and the reflectometer system. #### A. Slotted Line System Magnitude and phase of the impedance of such devices as radomes and antennas can be obtained with a slotted line system. A typical setup for making slotted line measurements is shown in Figure 2: Figure 2 - 1. The standing wave voltage pattern is measured by means of a probe in a slotted section. - Detected probe output is connected to the Model 415B Standing Wave Indicator which measures the swr. The maximum and minimum positions of the probe are noted. - The load is replaced by a short circuit and the shift in the position of the minimum is recorded. - This data is entered on a Smith Chart from which the magnitude and phase of the reflection coefficient and impedance is determined. ## B. Reflectometer Measurements When phase information is not necessary, the reflectometer system is the easiest method for determining impedance for the following reasons: The reflectometer setup saves engineering time by eliminating tedious swr measurements with slotted lines. Further, when driven by a swept oscillator, it makes possible direct and continuous oscilloscope or recorder presentation of reflection coefficient over a wide frequency range. The Model 416A Radio Meter automatically combines forward and reverse signals and displays their ratio directly irrespective of amplitude variations. A reflectometer setup is shown in Figure 3: - The Sweep Oscillator supplies 1000 cps square wave rf power through directional couplers mounted back to back. - The 752D Coupler samples forward power and the 752C samples reverse or reflected power. - 3. The auxiliary arms of both couplers are terminated in waveguide detector mounts such as the \$\ointilde{\phi}\$42lA which demodulate system power and provide 1000 cps signals to the ratiometer. The oscilloscope presents frequency on its horizontal axis versus reflection coefficient on the vertical axis. C. Impedance Measurements below 500 mc Below 500 megacycles slotted sections become too long for practical use. However, impedance can be measured below 500 mc with the 803 VHF Bridge. A block diagram for this measurement is shown in Figure 4: Figure 4 - The magnitude and phase dials of the Model 803A VHF Bridge are adjusted until a null is detected in the head phones which are plugged into the 417A VHF Detector. - The magnitude and phase of the impedance are read directly from the Model 803. #### III. ATTENUATION MEASUREMENTS There are two methods which can be used for making attenuation measurements quickly and accurately. For the first method, a power level is first set on the 415B Standing Wave Indicator as shown in Figure 5. Care should be taken so that the power applied to the detector mount does not exceed 1 my so the barretter will operate in the square law region. The unknown attenuation is next inserted in the system. The decrease in power level on the 415B is the attenuation on the unknown attenuator. By this method, and the use of an appropriate barretter, attenuations up to 40 db can be measured. Figure 5 The second method is as follows: The two 382's in Figure 6 are set at 0 db and a power level is set on the 415B. The unknown at- tenuator is then removed from the system. The amount of attenuation which has to be added with the 382's to reach the same power level on the 415B is the attenuation of the unknown. Frequency Measurements. 10 cps to 220 mc. Frequency Measurements. 10 mc to 18 kmc. Figure 7 By this method, attenuations up to 100 db can be measured because you operate at the same power level, thus eliminating the problem of square law bolometer operation. IV. FREQUENCY MEASUREMENTS Frequencies from dc to 40 kmc can be measured and recorded with frequency counters and associated equipment. A block diagram of the \$\overline{\phi}\$ system for measuring frequencies up to 40 kmc is shown in Figure 7. This system is extremely versatile because its major components can be used for other important applications. For example, the Model 524D Frequency Counter and the Model 560A Digital Recorder will measure and record frequencies up to 220 mc, period, time intervals from one microsecond to 100 days, and with appropriate transducers, speed, pressure, temperature and flow. Also, the Model 49lA Traveling Wave Amplifier has a wide range of applications. For example, it can be used for broad band and narrow band amplification, power amplification and constant output amplification. It provides an exceptionally simple and flexible method of electronically checking radar, navigational and other instrumentation systems, because frequency shifts produced by sawtooth modulation make it uniquely suited for doppler simulation. Complicated methods for doppler simulation involving critically tuned crystals and mechanical cumbersome methods are thus eliminated. ## EQUIPMENT FOR MICROWAVE MEASUREMENTS ## POWER MEASURE MENTS To 1 kw - 10 mc to 40,000 mc -- Coaxial and Waveguide Systems Waveguide - Coax Adapters S281A, G281A, J281A, H281A, X281A Precision Attenuators S380A, G382A, J382A, H382A, X382A, P382A, K382A, R382A Directional Couplers (3 db) S752A, G752A, J752A, H752A, X752A, P752A, K752A, R752A Directional Couplers (10 db) S752C, G752C, J752C, H752C, X752C, P752C, K752C, R752C Directional Couplers (20 db) S752D, G752D, J752D, H752D, X752D, P752D, K752D, R752D Tunable Bolometer Mount 475B Universal Bolometer Mount 476A Coaxial Thermistor Mount 477B Waveguide Detector Mounts S485A, G485B, J485B, H485B, X485B Waveguide Thermistor Mount G487B, J487B, H487B, X487B, P487B, K487B, R487B Microwave Power Meter 430C Calorimetric Power Meter 434A ### IMPEDANCE MEASUREMENTS ## A. SLOTTED LINE MEASUREMENTS Signal Generators 606A, 608C/D, 612A, 614A, 616A, 618B, 620A, 626A, 628A Square Wave Generator 211A Waveguide Frequency Meters J530A, J530B, H530A, X530A, P530A, X532A, P532A, K532A, R532A Flap Attenuators 8375A, G375A, J375A, H375A, X375A, P375A, K375A, R375A Universal Probe Carriage (809B) and Slotted Sections S810A, G810B, J810B, H810B, X810B, P810B, also 806B Probe Carriage (18 to 40 Kmc) 814B Slotted Sections (18 to 40 Kmc) K815B, R815B Coaxial Slotted Lines 805A/B Broadband Probes 442B Untuned Probes 444A, 446B Standing Wave Indicators 415B # B. REFLECTOMETER MEASUREMENTS Ratio Meter 416A Oscilloscope 130B Swept Frequency Oscillators 683A, 684A, 685A, H01686A, 686A, 687A ## C. MEASUREMENTS BELOW 500 MC VHF Bridge 803A VHF Detector 417A # ATTENUATION MEASUREMENTS No additional equipment necessary. ## FREQUENCY MEASUREMENTS Frequency Counter with Plug-In Units 524D, 525A, 525B Digital Recorder 560A or 561B Transfer Oscillator 540B High Frequency Mixer P932A Traveling Wave Amplifiers 491A, 492A, 494A