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Introduction

Bandwidth, sensitivity and
writing rate are familiar terms to
most oscilloscope users. With the
rapid growth of digitizing
oscilloscopes, users need to know
more about specifications like
sampling rate, bits of resolution
and differential non-linearity to
determine what kind of
instruments they need to make a
measurement. A large part of this
new vocabulary concerns voltage
and time resolution, and here
people often make misleading
over-simplifications.

This application note explains
resolution, errors in digitization,
and their measurement and
improvement. [t discusses the
relationship between real-time
sampling rate and analog
bandwidth, and the effects of
these considerations on automatic
parametric measurements.
Although the oscilloscope user
usually doesn’t need to know
these internal design
considerations, occasionally they
do affect measurements.

Voltage Resolution

To decide whether you can make
an overshoot measurement on an
oscilloscope you must know its
resolution. Analog oscilloscope
resolution is generally specified in
lines per division; digitizing
oscilloscope resolution in bits. To
compare the different
measurements, you must
understand differences in the
front-ends of both kinds of
oscilloscope as well as a figure of
merit known as “‘effective bits.”
Figures 1a and 1b show an
example of this.
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Figure 1a. On 1V/div scale. The analog
oscilloscope’s resolution is 33mV. Since the signal
must not overdrive the vertical amplifier, for a
TTL signal this is the most sensitive scale
useable. The smallest discernible overshoot is
0.6%. Uncalibration of the vertical helps but
doesn’t improve measurement capability.
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Figure 1b. Since digitizing oscilloscopes process numerical information, the digitizing limits can
be set on a much smaller range. Here 8 bits of resolution would produce a voltage resolution of

15.6mV, allowing a 0.3% overshoot measurement.

Analog oscilloscope resolution is
defined [1] as the total number of
trace lines discernible along the
coordinate axes, bounded by the
extremities of the graticule or
other specific limits. For a typical
analog oscilloscope, this means
that vertical resolution depends on
the vertical attenuation setting.
Thus, a different voltage resolution
is associated with each vertical
scale. A typical value is 30 lines
per division, which on the 1 V/div
scale represents a voltage
resolution of 33 millivolts.

Now enter digitizing
oscilloscopes, and a host of other
digitizing instruments, whose
manufacturers specify resolution in
bits. The voltage related to the
least significant bit out of the
digitizer is the resolution of the
instrument at a particular setup.
How many bits of resolution does
an analog oscilloscope have?
Assuming 30 lines per division
and a full scale signal, this is 240
lines on screen, or almost eight
bits. Eight bits would be 256 lines
on screen, or two raised to the
eighth power.



Knowing the number of effective
bits of resolution for analog or
digitizing oscilloscopes does not
allow you to compare their
measurement capabilities directly.
Equating analog oscilloscope
resolution to digitizing oscilloscope
resolution assumes that all aspects
of a digitizing oscilloscope’s
vertical subsystem are functionally
similar to those of the typical
analog oscilloscope. With most
analog oscilloscopes, you must
keep the signal on screen to avoid
overdriving the input amplifiers.
However, a digitizing oscilloscope
need not have these offset
limitations, so its resolution must
be considered more carefully. HP's
digitizing oscilloscopes provide
magnifying or scaling capabilities
that allow the full range of the
display to be focused on a portion
of the signal. A few analog
oscilloscopes have had this
capability in the past, but it is
being applied more frequently
today in digitizing oscilloscopes.
Because of its offset capability, the
digitizing oscilloscope outperforms
the standard analog oscilloscope
for the overshoot measurement
shown in figure 1.

Because the digitizing
oscilloscope of figure 1b doesn’t
have the offset limitations of the

analog oscilloscope of figure 1a, it

makes a better overshoot
measurement with the same
number of bits of resolution
because a more sensitive vertical
scale can be used. However, the
real comparison is not this easy.
This is because a converter’s
resolution can be different from
that implied by the number of tits
it outputs. An eight-bit converter
often doesn’t produce eight useful
or "‘effective’”’ bits without
sacrificing bandwidth by running
at a slow sampling rate, or by
passing the signal through analog
or digital filters. HP’s digitizing
oscilloscopes have approximately
the same amount of vertical
resolution as analog oscilloscopes,
balancing the “‘effective’”
resolution of the converters and
front end offset capabilities.

Digitizing oscilloscope
measurement capability is not
determined by the number of A/D
output bits, nor by the number of
bits that can be spanned (as in the
above example) by the converter. It
is governed instead by the
effective amount of resolution that
can be applied to the waveform.
This resolution can be measured
in “‘effective bits.” To understand
the concept of effective bits, it's
necessary to understand various
problems arising in A/D
conversion.

The Digitization
Process

The ideal A/D converter has a
transfer function that looks like a
set of stairs (fig. 2a). Quantization
error is the only error to which it
is subject because it produces the
same output code for a range of
input voltages. Real converters are
subject to additional distortions
that are examined in this section.
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Figure 2a. An ideal A/D converter. Note that
thresholds are all equally spaced.

Obtaining numbers that
represent a time-varying voltage
introduces errors. [3] These errors
degrade the performance of A/D
converters and limit resolution.
The digitizing oscilloscope
designer’s problem is to control
these errors to produce useful
information, which involves
controlling noise, non-linearities,
missing codes and aperture
uncertainty.
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Noise

Primary noise sources are
thermal processes and in the
digitizing oscilloscope, the
quantization process itself. The
signal actually digitized may be
thought of as having a random
signal added to it:

V@) = st) + N@© (1)

where s(t) is the underlying or
“true’’ signal, and N(t) represents
noise. N(t) is a random process
[2]. Consider for each instant in
time t,, N(t,) is a random variable.
For thermal noise, which stems
from the molecular motion in a
conductor, each N(t) is a
rmally-distributed random
variable with mean zero and a
certain variance. Since N(t) is a
random process, V(t) is a random
process, and each V(t) is a
random variable with mean s(t)
and variance identical to that of
N(t). We make an additional
requirement that the random
process N(t) be stationary? that is,
for each instant in time, the
associated random variable N(t)
has the same mean and variance.
Notice that V(t) is not stationary,
since its mean is s(t). When the
real signal V(t) is digitized, the
error N(t) may exceed the voltage
represented by the smallest
quantization step. This results in a
different code than the one
representing the voltage s(t).
Because the value of the nearest
threshold is ‘‘unknown,” another
random process acts. Another
random number is added to the

* [t must also be ergodic. For more explanation see (2].

noise-corrupted signal at every
sampling instant, so that the
output represents a discrete
voltage associated with a particular
output code. This can be thought
of as a quantization noise process,
Q(t). Each Q(t) has mean zero
and a uniform distribution from
-q/2 to q/2. So now:

CODE(®) = V() + Q@) (2)

= s(t) + N(@®)

This is an expression for a noisy,
quantized signal, which will later
be used to explain the effect of
averaging and filtering.

Non-linearities and
Missing Codes

Non-linearities in the A/D
converter are another source of
error in digitized data. Missing
codes are a form of differential
non-linearity. Differential non-
linearity results when one or a few
of the codes of the A/D converter
is not the right size. Figure 2a
shows an ideal A/D’s transfer
function, and figure 2b shows the
transfer function of an A/D with a
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Figure 2b. Differential nonlinearities. Some
variation in threshold spacing, even a missing

code.
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Figure 2c. Integral nonlinearitv. Small-scale
signals show only gain and offset errors. Full-
scale signals are severely distorted. Integral
nonlinearity can also be caused by other circuit
elements in the signal path.

differential non-linearity and
missing code. Notice that in the
ideal A/D converter, all the codes
are the same size—that is,
v(n+1)-v(n) is a constant for all n,
each n representing the nth
threshold. The effects of missing
codes or differential non-linearities
on full-scale signals are usually
not great. However, they may
severely distort small scale signals
that cross the non-linearity.

Integral non-linearity distorts the
overall waveform (fig 3c). It can
result from non-linear conditioning
of the signal either before it
reaches the A/D converter or
within the converter. For small
signals, distortion is minimal and
is reflected in gain or offset errors.
On the other hand, for full-scale
signals, significant distortion
occurs. Note that integral non-
linear distortion is not limited to
A/D converters, but that it affects
overall signal fidelity.



Aperture Jitter

Sampling aperture is defined as the
interval of time that the sampler is
‘turned on. Errors in the time
placement of the sampling aperture
are known as aperture jitter, and
they are caused by noise in the
time base. When the placement of
the sampling aperture is at the
wrong time, an incorrect voltage
sampled is reported as having
occurred at the proper time.
Clearly, no amount of A/D
converter resolution remedies this
kind of error. Noise in the time
base can result either from a noisy
trigger, which causes uncertain
placement of waveforms with
respect to the trigger point--
particularly serious when repeated
acquisitions are being compared
against each other--or from non-
linearities in the timebase circuitry
itself.

Noise, non-linearities, and
missing codes cause a converter to
have less resolution than indicated
by the number of its output bits. If
a converter has missing codes or
other differential non-linearities in
certain frequency ranges, then its
ability to resolve signals at those
frequencies is clearly less than an
ideal converter with the same
number of output bits. The same
holds true for non-linear distortion,
whether it is introduced by non-
linearities in amplifiers or other
devices such as charge-coupled
devices (CCDs), which are often
used to sample the analog signal

for later digitization at a slower rate.

Everv A/D converter is subject to
these errors. To compare between
converters, several tests have been
devised [3]. Effective bits, a simple
and easy to understand figure of
merit, is discussed in the next
section.

Performance Measurement

of Digitizers

Vertical resolution can be estimated
by measuring the fidelity with
which a signal is digitized, and
then stating this measure
understandably. This is the method
of the sine wave curve fit test, or as
it is sometimes called, the effective
bits test. A real digitizer has N
effective bits if it performs as well
as an ideal N-bit digitizer at a given
frequency. An ideal N-bit digitizer
is subject only to quantization error.

Here “‘as well as’’ is usually taken
to mean in a root-mean-square error
(RMS) sense. The voltages
represented by the A/D converter
output codes are compared to the
input voltages at the sample times.
The RMS error between the output
of an A/D converter V,, and its
input V, is defined as:

1 N
—_ 2 (vo-vi)z (3)

RMS N-1 in1

All A/D converters, even ideal
converters, introduce errors. The
RMS error introduced by an ideal
converter corresponds to its
quantization error, which declines
as the number of bits increases. The
greater the resolution of the
converter, the less its RMS error.

Relating effective bits to RMS
error:

Effective . N-log, [:RMSMEASURED]

bits _Ws_—'
1DEAL

()

As the measured RMS error
increases, the number of effective
bits decreases. If an A/D converter
is measured and has RMS equal to
the ideal RMS for a given
frequency, then it has N effective
bits at that frequency. Note also that
if the measured RMS is less than
the ideal RMS, a converter has
more than N effective bits. This is
possible when the signal is
processed either by a smoothing
filter (for single-shot samplers) or
by averaging (for repeating
samplers). Assuming a small
quantization step size, the
quantization error density function
over individual codes is uniform.
Then RMS(ideal) = Q/+/12 where Q
is the quantization step size. A
more detailed description of the test
procedure for determining the
effective bits can be found in [4].

The effective bits figure of merit
depends on frequency. A digitizing
oscilloscope with a seven-bit A/D
converter may have more resolution
at some frequencies than one with
an eight-bit converter if it acquires
signals with less RMS error.



Improving Voltage Resolution

Two techniques are particularly
useful in improving the information
quality from A/D converters—signal
averaging for repetitive signals, and
digital filtering for single-shot
signals. Signals can be both filtered
and averaged as well. In practice
it's possible to increase resolution
by two to four bits using these
techniques, even to achieve better
resolution than possible with an
ideal converter of the same number
of output bits.

Signal Averaging

Consider a signal corrupted by

random noise, as discussed above:

Vit) = s(t) + N(t).

we let each N(t) be normally
distributed with mean zero and
variance ¢? then the RMS error
associated with a digitization of
1000 points of this waveform is:

1 1000 .
J— [V(ti)'s(t.')]
999 E

i=1

€rms ™

. 1000
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Averaging the waveform, reduces
the RMS error by a factor of 1/vA,

where A is the number of averages:

A
Nit,) =Z N, ()
k=1

2
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This analysis assumes no
quantization error. However it
remains almost the same if
quantization error is added. If the
noise on a digitized signal has very
small variance compared with the
quantization noise, averaging the
signal only clarifies the quantization
steps. To be averaged effectively, a
signal must have enough noise on
it to be quantized to a step adjacent
to the one representing the
underlying signal for a fair fraction
of the samples.
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To demonstrate the effect of
averaging, a noisy signal was input
to the HP 54100D digitizing
oscilloscope. Figures 3a and 3b
show the effect of averaging. Unlike
bandwidth limiting, another noise-
reducing technique, averaging does
not distort the underlying
waveform. Through averaging, it is
possible to improve voltage
resolution from seven bits to ten.

5.000 neec

Ch. 1 = 200.0 mvolte/div
Timebase = 1.00 neec/div

Figure 3a. Signal before averaging
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Figure 3b. Signal after averaging
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Digital Filtering Increases
Vertical Resolution.

Digital filtering is a more
sophisticated means of increasing
the resolution of digitizing
oscilloscopes. In essence, digital
filtering trades vertical bandwidth
for vertical resolution, and may be
used for both single-shot and
repetitive measurements. It is most
effective for single-shot data.

Just as an analog filter can be
thought of as the implementation of
a differential equation, a digital
filter is the implementation of a
difference equation.[5] Processing
the data using a digital filter can
increase the effective bits figure of
merit for a signal.

In the s-domain, a filter transfer
function relates the input signal
X(s) and output Y(s) by
Y(s)=H(s)X(s). H(s) is normally a
rational function that can be written
as H(s)= N(s)/D(s). Then,

dk 8
skY(s)cz?t—k-y(t) (8)

Transforming into the time
domain, noting that

D(s) Y(s) = N(s) X(s),

d

L
n d
y® - a,
” )
n=0

n
x(t)
dtn

M
z
n=0 ©)

A completely analogous pair of
expressions exist for sampled
signals. If X(z) and Y(z) are the z-
transforms of sampled sequences x,
and y,, and H(z) is the transfer
function of a digital filter, then
Y(z) = H(z)X(z). Again, H(z)
normally is a rational function. In
this case, however, a time-difference
rather than a differentiation relation
applies:

(10)

2 Y@ &y,

and the result is:

M L
Y bYen =) anXia 11)
n=0 n=0

This is just a weighted average of
inputs and outputs. Digitizing
oscilloscopes employing filters
generally use weighted averages of
just the inputs; these are known as
Finite Impulse Response (FIR)
filters.

How does filtering improve
resolution? Showing this
mathematically is beyond the scope
of this note, but one can see how
this works as follows: a simple
filter, y, = 0.25x,, + 05 x,+0.25x,,;
is applied to acquired data. If the
input sequence is corrupted by
noise, the averaging process of the
filter reduces the noise variance,
just as averaging repeated
occurrences did earlier. Now,
however, x, cannot be changing so
rapidly anywhere that its weighted
averages do not give a reasonably
good representation of the original
sequence. Another way to consider
this is that the signal part of a
sample x, is correlated to nearby
samples, but the noise part is not.
The noise component is filtered
out.

Filtering improves the effective
bits figure of merit because it
reduces the amount of noise. A
sinewave quantized to four bits is
filtered using the above filter
(figures 4a and 4b). The output

Figure 4a. Sine wave digitized with 4 bits of
resolution, no filter.

Figure 4b. Sine wave, digitized (4 bits); through
the filter x,=0.25 x,.; +0.5 x, +0.25 x, .,

resolution is visibly improved. The
effective bits figure of merit for this
example increased from 4 bits to 6.2
bits. The bandwidth of this simple
filter is 0.18 times the sample
frequency.

We will see that decreased
bandwidth is the cost of additional
horizontal resolution as well. Thus,
signal fidelity in the time domain
and analog bandwidth are traded
off at a given sampling rate.



Single-shot
Time Resolution

For analog oscilloscopes, time
resolution is defined as the
number of lines visible per screen.
The pixel resolution of a digitizing
oscilloscope may also limit time
resolution, but the usual limiting
factor in single-shot instruments is
the sampling interval. Many
instruments use repeating
sampling techniques such as
random repetitive [7] or sequential
sampling to increase time
resolution. Here the emphasis will
be on reconstruction filters to
increase time resolution in single-
shot (sometimes called ‘‘real-
time’’) digitizing oscilloscopes.

For a digitizing oscilloscope, the
best resolution obtainable without
signal processing is one sample
period. We can measure the time
of the trigger to a much finer
resolution than one sampling
period (figure 5), but the
resolution of single-shot
measurements involving the
trigger remains one sampling
period.

However, the horizontal
resolution can be improved using
a reconstruction filter. According to
Nyquist’s Sampling Theorem, if a
signal is sampled at a frequency

twice its bandwidth, then a
reconstruction algorithm exists to
completely recover its value at
every instant. [5]

Approximating this
reconstruction formula allows the
digitizing oscilloscope to
reconstruct signals and achieve
greater horizontal resolution. The

Figure 6. Linear reconstruction improves
horizontal resolution, but also increases RMS

error.

simplest reconstruction (or
interpolation) algorithm involves
simply drawing a line between

points and computing approximate

waveform values on the line. If

you do this to a sine wave (figure

6), it’s possible to reconstruct the
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waveform to an arbitrary
horizontal resolution, but now
RMS error has been added. You
have passed the sine wave
through a reconstruction filter
waveform to an arbitrarily fine
horizontal resolution. One
problem: this increases the RMS
error associated with the signal.

Reconstruction has a transfer
function of its own, and may
introduce distortion into signals.
Conservatively applied, even linear
reconstruction increases the
horizontal resolution without
significantly degrading signal
fidelity. However, more &
sophisticated signal processing
techniques can be used to
reconstruct signals with horizontal
resolution of one hundredth of a
sampling period (figure 7). This
can be accomplished without
significantly degrading vertical
resolution by conservatively
limiting the analog bandwidth of
input signals.

If the bandwidth of the
reconstruction filter is increased,
two effects result. First, single-shot
waveform fidelity deteriorates
(figure 8). Second, if a slow rolloff
filter is used to minimize pulse
distortion, more signal above f /2
passes through. This induces jitter
on edges and, ultimately, aliasing.
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COUNTS

TIME WINDOW . . . . .
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. X . . .

\-RECONSTRUCTED POINT

Figure 5. On repeated sweeps, time interval resolution can be
improved by use of a “’Fine interpolator’’ which measures the phase
of the sample clock at the trigger instant. The first point after the
trigger is displayed according to the number of fine interpolator
counts from the trigger to the next sample clock. Upon repeated
sweeps, it is possible to place the displayed points using the phase

w@_‘_‘m——f"m &GH‘”NG

LOW
WEIGHTING

of the sample clock and “’fill in’ the intervals between points. This
technique, while reducing jitter, does not necessarily improve

time resolution.

Figure 7. Depiction of how a reconstructed point is obtained. The
sampled points are used in a weighted average to calculate the value
of the reconstructed point. For other points, the window is moved.
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Figure 8a. Step response of digital filter with
bandwidth 0.1f;.
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Figure 8b. Step response of lowpass digital filter
with band width 0.25f,.
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Figure 8c. Lowpass digital filter step response
bandwidth 0.5f,.

Sampling Rate and
Analog Bandwidth

Oscilloscopes are designed to
display time-varying signals
without inordinate distortion.
Analog bandwidth is defined as
the frequency at which an
instrument attenuates a signal by
3 dB. Real signals, such as square
waves and step inputs cause
problems because they are not
bandwidth-limited. To minimize
distortion of these kinds of
signals, oscilloscope designers use
a transfer function between the
input and display that rolls oft
slowly and preserves phase
linearity. Typical designs use
Gaussian or maximally-flat time
delay (MFTD) filters.

To prevent aliasing, the
digitizing oscilloscope must
significantly attenuate signal
spectral content above one-half of
the sampling frequency. In
digitizing oscilloscopes, several
analog and digital elements control
the bandwidth (figure 9). We are
interested in the overall transfer
function of these elements.

The significant attenuation at
half the sampling frequency
requirement forces the digitizing
oscilloscope designer to make
another compromise. Essentially,
bandwidth and signal fidelity
must be traded off at a given
sampling frequency. Choosing a
limited bandwidth can yield
exceptional pulse waveform
fidelity; tolerating distortion yields
higher bandwidth and better
instrument rise time.

Looking at several lowpass
digital filters over a range of
bandwidths demonstrates this.
Their step responses are shown in
figure 8. To achieve good signal
fidelity for a variety of common
pulse waveforms, it is necessary to
limit the analog bandwidth to
sampling rate ratio to about 0.25.
Beyond this, even though
continuous-wave (CW) signals are
not attenuated, pulse waveforms
are unacceptably distorted.

Vi ANALOG
" FILTER A/D {—
‘-— MEMORY RECONSTRUCTION

DISPLAY

H(s)

Figure 9. Both analog and digital circuit elements control a digitizing

oscilloscope’s analog bandwidth.
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Also, oscilloscope users
frequently wonder about the
voltage of the input signal
between sample points. Many
suspect that there are wide
variations or glitches in the signal
that are not being digitized, and in
fact are being ‘“missed’’ by the
sampling process. However,
digitizing and analog oscilloscopes
perform similarly in this regard
because of the analog front-end of
digitizing oscilloscopes. If the
analog bandwidth is to be limited,
spectral content above this
bandwidth must be eliminated by
analog filtering to prevent aliasing.
But the bandwidth limiting feature
also spreads and attenuates high
frequency glitches, making many
wide enough to appear on one or
two nearby sample points. Of
course, if the glitch is short
enough that its frequency
components are extremely high
when compared to the
instrument’s bandwidth, the
sampler detects nothing. This is
identical to the analog
oscilloscope’s response to wildly
out-of-band inputs.

Conclusion—

Parametric Measurements
are What Really Matter

Voltage Resolution

To measure overshoot, you must
know the limitations of the input
circuitry of your oscilloscope.
Digitizing oscilloscopes have either
magnification capability or the
ability to set gain and offset to
allow a small vertical range of an
input signal to be digitized. In this
way, equal or superior resolution
to analog oscilloscopes can be
achieved on most measurements.
Digitizing oscilloscopes process
data numerically using averaging
or filtering to improve resolution.
With improved vertical resolution,
it's possible to place voltage
markers (percentages of the top
and base of a signal) on a signal.
Precise voltage determination
means both precise vertical and
horizontal measurements.

I

Time Resolution

Most pulse parameters are time-
interval measurements. The
measurement of a single-shot
pulse width can have high
variance if a signal is
undersampled, or reconstructed
using a filter designed to
maximize CW bandwidth. Figure 9
shows an undersampled pulse. If
no reconstruction is done, the
pulse width may vary from
measurement to measurement by
as much as a full sample period.
Even with linear interpolation, this
situation may be as bad.
Undersampling introduces edge
jitter, and pulse width is
uncertain. However, by limiting
system bandwidth to
approximately one fourth the
sampling rate, it is possible to
build reconstruction filters with
minimal edge jitter. With these
filters, precise time-interval
measurements may be made on
such narrow pulses.

e

Figure 10. Pulse width measurement varies on repetition by as much as 25% tor this short
undersampled pulse. Reconstruction filtering minimizes the measurement variation.
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