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Characterization of timing in the disk drive read channel is a critical task for the drive designer. While a
variety of parametric and time domain measurement techniques exist, timing characterization gives the
designer the most relevant indication of the drive’s ability to reliably store and retrieve data. The pre-
dominant time domain technique, popularly called "phase margin analysis", extrapolates the available
timing window margin for a given error rate using error acceleration methods.

The HP 5371A Frequency and Time Interval Analyzer improves the information that the phase margin
analyzer (PMA) provides. While the PMA excels at a rapid overview of the drive’s aggregate timing per-
formance, the HP 5371A can be used to break this aggregate timing information into distinct compo-
nents: aggregate PMA noise into read noise and write noise; and aggregate PMA offsets into peak shift
and asymmetry. With this information, the designer can now determine which sources of timing error
limit the drive’s error rate performance and focus on those with the greatest potential for improvement.
For example, understanding that write noise effects are limiting phase margin noise performance can
help the drive designer work more effectively with the media supplier to gain the greatest timing margin
improvements.

This application note describes procedures to characterize read noise, write noise, timing asymmetry and
peak shift of magnetic disk drives using the HP 5371A and a desktop computer. This note will concen-
trate primarily on the configuration of the HP 5371A, the computer algorithms, and the related “theory”
of measurement implementation. For the reader who is new to the above timing effects or prefers a
clarification of the definition of these, Appendix A contains a list of measurement definitions. Appendix
B offers a brief summary of key statistical concerns and an example of the HP 5371A’s measurement
precision.
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The HP 5371A allows the drive designer to break apart aggregate timing noise and offset effects to optimize error
rate performance.




Key Contributions of the HP 5371A Frequency

and Time Interval Analyzer mess——————

Continuous Measurement

The HP 5371A features an important breakthrough in the measurement of frequency or time interval.
This new capability, termed “Continuous Measurement”, offers unique performance benefits over other
time interval measurement techniques. These benefits include not only dramatic increases in throughput,
but measurements can be related to each other by time or events. It will be shown in this application note

that the exploitation of the latter is key to several disk drive measurements.

A simple analogy will serve to illustrate the "relative” sense of continuous data. Consider the ruler in
Figure 1a. It is easy to see that the distance between the 4-inch mark and the 3-inch mark is 1 inch (4
inches - 3 inches). In a similar fashion, the distance from the 6-inch mark to the 2-inch mark is 4 inches
6 inches - 2 inches). Clearly, the separation between any two points can be determined with the same
measurement precision as between two adjacent points by finding the difference between appropriate

inch marks on the ruler.
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Figure 1. (a) A ruler analogy depicts the concept of the continuous measurement data format. (b) The HP
5371A keeps track of both events and time. Note that the time interval measurement precision is constant,

regardless of the pulse spacing.

The HP 5371A uses several specialized count registers to keep track of both time and event data. These
registers are never reset during a series of measurements and so the memory is filled with time and event
"samples” analogous to the inch marks of the ruler. Figure 1b illustrates how the time and number of
events between any pair of these time samples can be determined without a loss in precision.

As pointed out above, Continuous Measurement also offers excellent throughput. The minimum time to
store time and event sample information is 100 ns. Therefore, the HP 5371A measures EVERY specified
data event up to a 10 MHz rate. It is important to note, however, that even if events occur faster than this
10 MHz rate, the HP 5371A continues to count events and time. The data reflects precisely which events
are measured (or "time sampled”) and which are not. This capability will be shown later to be especially

important for the characterization of timing asymmetry and peak shift.
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Flexible Arming

The HP 5371A offers a wide selection of arming and triggering features to control when time samples
occur. This built-in arming capability reduces or eliminates the need for specialized outboard hardware
circuitry to arm the HP 5371A.

Measurements may be acquired in groups (or blocks) of up to 1000 measurements (up to 4095 measure-
ments per block are available when using the HP-IB binary output mode). The arming configuration is
specified in a two-stage fashion as “block holdoff/measurement sample.” The first term describes the
sequence which is required to begin the group of contiguous measurements. The second term describes
the condition which will cause each measurement sample to occur within a block.

In general, block holdoff arming may be defined as follows:
s Automatic - begin the measurement block as soon as possible.
» Edge Holdoff - begin the measurement block after the occurrence of a signal edge.
= Event Holdoff - given a reference signal edge (such as an index pulse), delay by some number of
events and then begin the measurement block.
= Time Holdoff - given a reference signal edge (such as index pulse), delay by some amount of time
and then begin the measurement block.

Sample arming may be defined as follows:
= Automatic - sample time as quickly as possible.
= Edge Sampling - sample time after the occurrence of a signal edge.
= Cycle Sampling - sample time after a specified number of cycles of the input signal.
= Interval Sampling - sample time after a specified time (continuous).
s Time Sampling - sample time after a specified time (non-continuous).
= Event Sampling - sample time after a specified number of events (non-continuous).
= Parity Sampling - sample time after the occurrence of a pair of start and stop events.!

Any of the three input channels (channel A, channel B, or External Arm) may be used for arming
configurations.

Fast HP-IB

The HP 5371A features excellent HP-IB performance with binary output rates to 20,000 measurements
per second.? In addition, a choice of three output formats is available: ASCII, floating point, and binary.
The binary format offers the time and event sample information which will be used in this application
note for timing asymmetry and peak shift characterization. The IEEE double-precision floating point
format matches the numeric format of the HP 9000 Series 200/300 desktop computers. This latter output
format simplifies I/O operations for computers with the same internal data format. The floating point
format will be demonstrated in the read and write noise program example.

Measurement Precision

Measurement precision is fundamental to the integrity of time interval data. The HP 5371A features 150
ps rms resolution for single-shot measurements, 2 mV trigger level resolution, and a 500 MHz input
bandwidth. Input bandwidth and voltage triggering precision, as well as measurement resolution, are
critical for quantification of nanosecond and sub-nanosecond noise components found in high perform-
ance disk drives.

The arming capabilities are also related to the measurement mode. A comprehensive description of the HP 53714's arming capability
can be found in the HP 53714 Product Note/Specification Guide and the HP 53714 Operating and Programming Manual. See
Appendix C.

2The HP 53714 Product Note/Specification Guide lists HP-IB benchmarks for the various output formats, and a binary daia
processing algorithm for this benchmark.
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This section will describe the configuration of the HP 5371A for four types of measurements:

s read noise » timing asymmetry
= write noise = peak shift

A discussion of measurement theory, including key assumptions, is included. Program examples to

process the HP 5371A data are also presented. For illustration purposes, these programs are coded in
“Rocky Mountain Basic", available on HP 9000 Series 200/300 desktop computers. Copies of these f
programs can be obtained on floppy disk by returning the reply card in this application note.?

Measuring transition-to-transition and compensating for correlated noise

The measurements discussed will be configured around measuring time intervals from transition-edge to
transition-edge, rather than transition-edge to PLL clock-edge. This technique is proposed to eliminate
uncertainty caused by PLL clock jitter when measuring transition-to-clock. However, the HP 5371A may
be used to measure timing jitter in a transition-to-clock fashion if desired, and the example routines may
be modified to suit this purpose. When using this latter technique, it may be desirable to use the HP
5371A to characterize the jitter on the PLL clock in order to remove that component from measurement
results.

Certain precautions must be exercised when using transition-to-transition time interval measurement

techniques. Isolated pulses found in magnetic disk drives in general exhibit “tails" that interact with

adjacent pulses, especially when data pulses are spaced close together. The interaction of these tails with

neighboring pulses causes timing jitter or noise to be correlated between adjacent pulses. In other words,

the noise on the current pulse is, in part, influenced by the preceding pulse in the read channel. For this '
reason, the algorithms described will take precautions to avoid measuring time intervals between adjacent

pulses, and in fact will measure between relatively "distant” pulses to avoid this noise correlation. This

precaution is easy to implement given the arming capabilities of the HP 5371A and the continuous

measurement data format.

For all of the measurements discussed in this application note, it is assumed that the HP 5371A is
connected to the read channel at a point after the zero-crossing circuitry. In this configuration the HP
5371A measures digital logic signals with an RZ (return-to-zero) signal, rather than the bipolar read
signal, or an NRZ (non-return-to-zero) signal. See Figure 2.

Bipolar |
Read Back I
Signal |

|

I
I
I
I
I
I
| |
I I
{1 )

. I

Signal

Figure 2. The HP 5371A is connected to the read channel electronics at a point after the zero-crossing detector wl
to measure an RZ logic data signal.

3This software is offered at no charge as an example of the techniques described in this application note. Software performance is
not warranted by Hewlett-Packard.
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The configuration of the HP 5371A and external computer will allow read noise and write noise to be
characterized from the same set of raw data. The following will describe each measurement separately,
while referencing a single configuration and computer program.

Read Noise Characterization

Measurement Theory

The approach to read noise characterization is to measure a specific time interval on the disk repeatedly.
The variation of these repeated measurements describes the effect of noise in the system on readback
timing. Since only a particular interval is measured, write noise effects are removed. In other words, per-
turbations due to the write process are fixed for a specific interval; the variation of successive measure-
ments of a particular time interval is due to read noise.

The standard deviation is a means of quantifying these variations. Note that a time interval measurement
includes the variation of both the starting transition edge of the time interval measurement and the
stopping edge. Assuming that noise affects both edges equally, the variation should be divided equally
between starting and stopping transition edges. This is accomplished by dividing the statistical variance by
2, or the standard deviation by /2. Appendix B offers a reference for key statistical equations and tables.

Read noise measurements are dependent on the particular read channel electronics and the measure-
ment instrumentation. The measurement resolution of the HP 5371A must be accounted for to obtain the
true measure of read noise. Adding the HP 5371A resolution to the read noise term in a "sum-of-the-
squares” fashion results in the following equation:

(HP 5371A Measurement Resolution)* + (Actual Read Noise)®
2

This equation can then be solved for the actual read noise. Appendix B provides an example calculation
of HP 5371A measurement resolution.

(Measured Result)® =

Read noise will generally be the greatest for patterns which smooth the signal peaks, resulting in a more
gradual, or flatter, slope of the differentiated signal. Figure 3 depicts how this slower slewing signal will
be more susceptible to noise at the zero crossing detector, Parametric measurement techniques (signal-
to-noise ratio) can fail to identify this effect for signals with equal amplitude.

Pulse amplitudes are
identical, SNR will be
equal for equal noise.

Noise on the differentiated
. signal causes timing uncertainty
. in zero crossings

L] * o & » 0o 0+ @
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Figure 3. "Flatter" readback signal peaks are more susceptible to system noise than sharper peaks. Parametric
SNR techniques can fail to predict this effect for signals of equal amplitude.



A constant frequency pattern is assumed in the example algorithm. In general, lower frequency patterns
demonstrate greater read noise: pulse interaction causes lower amplitudes (resulting in degraded signal-
to-noise ratio), but superposition effects actually serve to sharpen the pulse peaks. These sharper peaks
result in a steeper differentiated signal and subsequently less noise susceptibility at the zero-crossing
detector. These superposition effects are greatest when pulses are closely spaced. Low frequency patterns
have smaller superposition effects and therefore demonstrate greater read noise.

Non-symmetrical isolated pulses such as those found in thin-film systems can cause complex inter-pulse
relationships that create unexpected noise improvement or degradation for various transition spacings.
The designer may wish to experiment with various frequency patterns to determine the worst-case read
noise pattern for a particular system,

Measurement Configuration and Computer Algorithm

Figure 4 is a flow diagram of the program to characterize both read and write noise using the HP 5371A.
Major blocks and key functions for read noise are discussed below.

' START } Rw_noise

Compute Read
and Write Noise

Initialize
Program
Variables !
Setup_5371a Display Results
Configure the
HP 5371A
for Measurements !
For Num_passes Returmn HP 5371A
to LOCAL and
L Setree_date Close Array Variables
Read a Block
of Data from
the HP 5371A 1
STOP
1 Add_stats
Update
Cumulative
Statistics

Figure 4. Program flow diagram for read and write noise computations.

Variable Initialization

Rather than measure a single time interval repetitively, the described computer algorithm will measure
many time intervals "down the track” (See Figure 5). This technique has the advantage of characterizing
data over a larger portion of the track rather than an isolated interval, providing a more characteristic
read noise value. The example program (program line #330) uses a block length of 1000 measure-
ments.’ The block length will determine the number of intervals to be measured down the track. (The
block length will also be important for write noise characterization.

While the block length describes the number of time intervals to be measured, the number of passes will
determine how many times each interval will be averaged to obtain the standard deviation (sigma) of that
particular interval. As few as 100 passes may demonstrate reasonable validity (variable Num___passes,
program line #350).

¢ !
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*Up to 4095 using the HP 5371A Binary output mode.

Figure 5. Read and write noise are characterized over many measurements "down the track"*. Multiple passes
over this same portion of the track are also used.

HP 5371A Configuration (Setup_—5371a Subroutine)
The subroutine "Setup_. 5371a" configures the HP 5371A for data collection. The measurement function
and arming type are configured after the instrument is PRESET.

The HP 5371A is configured to measure PERIOD using the EDGE/CYCLE sampling mode. Each block
of measurements will not begin until a negative edge occurs on the external arm channel (for example,
the falling edge of the drive’s index pulse). A measurement sample will subsequently be taken on input
channel A, every 16 cycles. See Figure 6.

An event delay between the start and stop of the time interval measurement is necessary to avoid the
noise correlation discussed previously. The HP 5371A CYCLE sampling mode for the PERIOD function
offers continuous event delays in the following increments: 2°, 2%, 22, 2', 2%, 2%, and 2%, An event delay
of 16 (2*) addresses the correlation criterion appropriately. (Note that EVENT sampling, while providing
greater flexibility in the value of the event delay, does not offer consecutive time interval measurement

capability.)

The number of consecutive samples gathered is defined by the variable "Block —length". Using the
SINGLE mode, the HP 5371A will go through this EDGE/CYCLE arming sequence of "Block__length"
consecutive samples for each pass through the FOR /NEXT loop shown in the flow diagram (See

Figure 4).

“The maximum block size is 1000 with the floating point mode output format. However, up to 4095 consecutive measurements can
be obtained using the binary output mode. 7



Program lines #950 through #980 configure the input circuitry, setting the trigger levels to appropriate
values. The program as shown uses manual triggering modes (ECL levels). The HP 5371A also features
"auto triggering” modes which set the input trigger levels to a percentage of the signal’s peak-to-peak
amplitude. Line number #980 sets the external arm trigger level for a TTL signal.

The remaining lines of this routine configure the HP 5371A for the floating point output mode with ex-
panded data ON. In the expanded mode for period, the HP S371A will not only return the period value,
but also the precise gate time of each measurement. This gate time is actually the time interval of interest
and will be used in licu of a time interval measurement. The floating point format is used here for the
sake of example. The binary output format could also be used to extract time interval data directly by
finding the difference between consecutive time samples.
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Figure 6. The EDGE/CYCLE arming mode is used to acquire data for read and write noise characterization.
A delay of 16 cycles (2*) insures adequate spacing to avoid noise correlation effects.

For each transition down the track, the ( wriance) gver repeated passes will describe a read noise value.
These variance values will then be averaged to determine the overall read noise for this block of meas-
urements, described as the square root of the average variance (standard deviation).

Acquiring the Data from the HP 5371A (Get__raw__data Subroutine)

This portion of the program will retrieve the floating point data from the HP 5371A block-by-block. As
discussed earlier, the HP 5371A is configured in the floating point output mode with expanded data ON.
The data from the HP 5371A is sent in pairs to the controller in the expanded mode. The first returned



value is the average period over the 16 cycle delay and the second returned value is the precise meas-
urement gate time. Since this gate time is actually the time interval desired, the period data will be dis-
carded as shown in lines 1280 and 1290,

After this processing has completed, the next block will be acquired and transferred from the HP
5371A to the controller. A potentially faster technique would be to transfer all of the data blocks to an
array in the controller at once. The entire array can then be processed to compute read and write
noise. The implementation of this technique has the drawback of being dependent on the amount of
computer memory available, based on the number of passes and block length chosen.

Required Memory = 16 bytes X (Block length + 1) X Number of Passes

Rather than require a specific amount of computer memory, this program example processes the data
block-by-block.

Statistics are computed cumulatively by keeping track of the sum and sum-of-the-squares values with
each block in the "Add _ stats” subroutine. These values refer to sums for each particular time interval,
or “column-wise" statistics of the entire data array. Appendix B describes a general form for a running
calculation of variance and standard deviation.

Read Noise Computation (Rw__noise Subroutine)

This routine processes the cumulative totals to derive the standard deviation of measurement values for
each particular interval (variable Read__temp). The square root of the average variance (standard
deviation) is then computed to derive the average read noise value for the measurement block.

The remaining portion of the program code displays the resulting read noise value, returns the HP
5371A to the LOCAL mode, and deallocates the memory reserved for the cumulative statistics arrays.

Summary Comments Regarding Read Noise Characterization
In summary, these key points are worthy of special consideration:

1) This technique is a characterization of the effect of noise on the differentiated read signal. The read
noise value will be dependent on the particular drive electronics as well as the measurement instrumen-
tation. Note that the precision of the HP 5371A may be accounted for as demonstrated earlier, as can
any other independent (and normally distributed) noise sources (e.g. PLL jitter for transition-to-clock
measurements, etc.).

2) The shape of the read signal peaks are of particular importance, since they determine the slope of
the differentiated signal and hence the susceptibility to noise at the zero-crossing detector. Signal
amplitude is not necessarily an issue as might be predicted with parametric SNR techniques (except as
required by the channel for gain and amplitude qualification considerations). A wide pulse with a
relatively flat peak will be more susceptible to read noise than a narrow pulse with the same amplitude.

3) When measuring from transition-edge to transition-edge it is important to consider the effects of
correlated noise from one pulse to the next. For this reason, the example algorithm uses relatively
"distant" data-edges for time interval measurements (16 data pulses between the start and stop of the
interval). Note that measuring the time of every transition is not critical to this technique. Indeed, a 16
cycle delay has been imposed between every sample to avoid noise correlation. Therefore, the HP
5371A and this application software may be used to characterize read noise on systems with transfer
rates up to 160 MHz (using the 16 cycle sampling mode).

4) Careful preconditioning of the media is critical for obtaining repeatable measurement results. For
comparable results, always use the same erasure, whether it is AC erasure or DC erasure with a par-
ticular bias.



Write Noise (Transition Noise) Characterization
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Measurement Theory

To characterize write noise or transition noise, the actual transition-edge timing must be determined in
the absence of read noise. Where the variance of successive reads of a specific time interval describes
the read noise, the mean value of these successive reads is the actual spacing of the transitions on the
media (assuming the read noise is normally distributed). In other words, read noise is "averaged out" to
obtain the actual spacing on the media for a specific pair of data edges. The variability of this transition
spacing "down the track" for a constant frequency pattern describes the write noise of the head/media
system.

For read noise measurements, the standard deviation of measurements for a particular time interval (a
column in the data array) is of interest. For write noise, the mean value for that same column of
measurements becomes of interest, allowing write noise to be determined from the same set of data as
read noise. See Figure 5.

The assumption is made that write noise affects both the start and stop transitions of the time interval
measurement equally. As with the read noise measurements, the standard deviation of the mean
intervals down the track should be normalized by /2 to account for the measurement configuration.

The use of transition-to-transition intervals rather than transition-to-clock intervals gains further
significance for write noise characterization, as low frequency PLL tracking errors may tend to bias the
write noise results.Precautions regarding correlated noise between adjacent pulses should be taken:
using the same algorithm for read noise, the minimum spacing requirements are already in place to
avoid noise correlation problems in the write noise measurements (16 data edges between the start and
stop of the interval measurement).

Preconditioning of the media may affect measurement results. It is critical to consistently set the same
conditions for the head/media system by using the same erasure for comparable results.

Unlike read noise, write noise characterization is independent of read channel electronics and measure-
ment instrumentation. Limited repeatability due to special electronics or various testers can be elimi-
nated using this HP 5371A technique. The HP 5371A can serve as an excellent verification tool between
the drive designer and the component supplier.

For a constant frequency pattern, the head system will attempt to space transitions on the media equally
apart. Any variation in what should be equal intervals for the constant frequency pattern is write noise
(assuming read noise is averaged out). The example algorithm assumes that a constant frequency
pattern has been recorded (the same assumption applies to the read noise measurement). Again,

the designer may wish to experiment with several different code frequencies for write noise
characterization.

Measurement Configuration and Computer Algorithm

The majority of the example program is identical in purpose and operation to that of read noise. Only
the portions of the program of particular interest to write noise characterization are discussed here.
Refer to Figure 4.

Variable Initialization

The block length and number of passes are important for write noise and read noise, but the impor-
tance of each number is essentially reversed. For the write noise calculation, the number of passes over
the data determines how much the read noise is "averaged out" of the calculations (Num__passes). The
number of consecutive intervals measured (Block__length) determines the sample size over which the
variability, or the write noise, is computed. The designer may wish to experiment with these values to
determine significance. For purposes of illustration, the program uses 100 passes (Num — passes) over
a 1000 measurement block (Block —length).

i ——— i —
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Write Noise Computation (Rw__noise Subroutine)

This routine determines the average value of a particular interval (a column in Figure 5). The mean and
mean-squared values for each of these column-wise mean intervals is maintained cumulatively. The final
line of the routine (line #1990) determines the standard deviation of the column-wise means (normalized
by /2). This standard deviation value describes the write noise of the system.

Summary Comments Regarding Write Noise Characterization
Several comments regarding characterizing write noise are worthy of consideration:

1) A system-dependent effect is write-clock jitter. The assumption has been made that this jitter is far
less than the write noise itself. Of course, this assumption may be characterized using the HP 5371A to
measure the stability of the write circuitry oscillator. As mentioned earlier, a major advantage of this HP
5371A technique is its independence of read channel electronics and measurement instrumentation.

2) Precision spindle speed control is necessary for accurate results (variability in motor speed between
passes can cause a smearing of the distributions); however, reductions in data acquisition times made
possible by the HP 5371A’s consecutive measurement capability reduces the impact of spindle variations
relative to slower, single shot measurement systems.

3) The algorithm assumes that a constant frequency pattern has been written on the media. This serves to
simplify the calculations for write noise. The designer may wish to characterize write noise over several
different frequencies.

4) Circumferential location on the media may influence write noise results, especially if the media
exhibits "spoking" or coercivity gradients. It may be of interest to measure write noise at several
locations around a data track to determine any variability with track location.

5) Measuring transition-to-transition intervals instead of transition-to-clock intervals eliminates concerns
about the PLL tracking error (this tracking error can bias write noise results). For transition-to-transition
measurements, minimum spacing requirements should be maintained to avoid noise correlation prob-
lems. As with the read noise measurement, measuring the time of every transition is not critical to this
technique. Therefore, the HP 5371A and this application software may be used to characterize

write noise on systems with transfer rates up to 160 MHz (using the 16 cycle sampling mode).

6) The algorithm always measures intervals across an even number of transitions (every 16th event), so
the effects of timing asymmetry do not impact the results. By measuring time interval in this fashion, it is
insured that the start and stop events are always of the same polarity (of the bipolar read signal), and
therefore asymmetry effects are avoided. If an odd number of transitions are within the interval, then
separate accounting of alternate measurements is necessary so that write noise can be determined for
either (or both) groups.

Timingi\symmetry (Pulse-Pairing) Characterization

Measurement Theory

The effect of timing asymmetry is to shift positive bipolar data pulses in one direction (that is, advance or
delay in time), while shifting negative bipolar data pulses in the opposite direction. For a constant fre-
quency pattern, this will result in alternating short and long intervals rather than a constant spacing
between transitions. This effect, also called "pulse-pairing”, can be seen graphically as a bimodal histo-
gram. (See Figure 7)

While the histogram technique provides easy identification of the bimodality of the distribution, some
guesswork about the tails of each distribution is required to determine the mean separation of the two
distributions. The numerical techniques to do this are quite complex. A simpler method is to group
positive-pulse to negative-pulse transitions and negative-pulse to positive-pulse transitions separately, and
then determine the mean separation.

11
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Figure 7. This HP 5371A histogram display clearly shows the effects of timing asymmetry. Complete quantifi-
cation of asymmetry can be done with the timing asymmetry program example.

The binary format of the HP 5371A offers the capability to distinguish alternating positive and negative
pulses by virtue of continuous event information. This is critical in light of the fact that the HP 5371A is
actually measuring an RZ (return-to-zero) signal, not the bipolar read signal itself. In the example shown
in Figure 8, odd numbered events correspond to positive bipolar data pulses, while even numbered events
correspond to negative bipolar data pulses.
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t.= nominal transition spacing.
t,= measured interval which is “short" due to asymmetry.
t,= measured interval which is “long” due 1o asymmetry.
Ag= timing displacement for a positive pulse.
A, = timing displacement for a negative pulse.

Figure 8. Timing asymmetry in a constant frequency data pattern causes a series of equal transition-to-
transition intervals to alternate short-long, short-long, etc. In this example, the short interval occurs between
a positive-to-negative (odd-to-even) pulse pair, and the long interval occurs between a negative-to-positive
(even-to-odd) pulse pair.
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In general, the particular polarity versus odd or even event correlation is unknown. However, the key
point is that the continuous event information offers a method to group measurement values by data
polarity (assuming no amplitude dropouts). Statistics can be calculated on each group, and consequently
the true mean separation of the distributions can be determined and the amount of timing asymmetry
calculated.

The following equations show the derivation of the asymmetry calculation:

Assuming A, = A, = A

te =t + 2A

te =1t -2A
In general

toe = t. £ 2A

teo = t. ¥2A

Where the terms are defined as follows:

te = measured interval from an odd-numbered pulse to an even-numbered pulse.

teo = measured interval from an even-numbered pulse to an odd-numbered pulse.

Averaging over n intervals to eliminate read/write noise:

itm = nt. = n2A

=1

S teo = nt. F n2A

i=1

ztoe = Eteo

i=1 i=1 ik 4A
n

Results should reflect the effect of asymmetry in the decoding window (£ A):

Etoe = Eteo
i=1 i=1

+ =
4 4n

Disk preconditioning plays a critical role for asymmetry measurements. The designer or test engineer
may wish to characterize timing asymmetry for both biases of DC erasure as well as AC erasure. The
results of this measurement are closely related to the particular method of disk preconditioning. It should
be noted that DC erasure will cause the greatest asymmetry; high frequency AC erasure will cause the
least asymmetry. The difference between these results describes the time domain effects of overwrite
performance.

As with read noise and write noise characterization, a constant frequency pattern is used for this meas-
urement algorithm. In general, the designer may wish to characterize a variety of constant frequency
patterns to determine the worst-case data pattern for timing asymmetry.

13
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Measurement Configuration and Computer Algorithm

The measurement algorithm primarily involves sorting the HP 5371A raw data to compute odd-to-even
and even-to-odd measurement intervals, corresponding to the positive-to-negative and negative-to-
positive bipolar transition-to-transition intervals (or vice-versa). While sorting the data, the algorithm
must also check for minimum spacing requirements to avoid noise correlation. Once the data has been
sorted, an average of each group of intervals is determined to compute timing asymmetry. Figure 9 is a
simple flow diagram of the program.

START
( ) b Compute_asym

Compute
Timing Asymmetry
for the Block

Initialize

Program

Variables

i
Setup_5371a Update Variables
for Multiple
Configure the Block Measurements.

HP 5371A

for Measurements

¥

For Num_passes

- 1
¥ Get_raw_data Display
Final Results

Read a Block
of Data from
the HP 5371A

Return HP 5371A to
LOCAL Mode and
Close Array Variables

! Proc_ti

Process the Data
into Time and
Event Samples

i

C=D

Figure 9. Program flow diagram for timing asymmetry computations.

Variable Initialization

The algorithm will measure many time intervals "down the track” to determine timing asymmetry. The
number of intervals measured is set with the variable "Block _length" (line #240). Block length can take
on values up to 4095 when using the HP 5371A binary output mode. The value of Block__length
determines the number of intervals averaged to remove read and write noise effects.

If more intervals need to be averaged, the variable "Num __passes” (line #250) may be modified. This
will cause multiple passes over the same portion of the track to average read and write noise further.

The variable “Min__spacing” (line #390) is used to control the spacing between time interval measure-
ments. This value is important to avoid noise correlation when measuring from transition to transition.
The INTERVAL sampling mode will be used with the HP 5371A and the sample interval value is set to
the value of "Min__spacing".
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HP 5371A Configuration (Setup__5371a Subroutine)

The subroutine "Setup__5371a" configures the HP 5371A for data collection. The measurement function
and arming type is configured after the instrument is PRESET.

The HP 5371A is configured to the TIME INTERVAL mode using the EDGE/INTERVAL arming
mode. Each block of measurements will not begin until a negative EDGE occurs on the external arm
channel (for example, the falling edge of the drive’s index pulse). Once the block has begun, a TIME
INTERVAL measurement between two consecutive rising transition edges on input channel A will be
taken. The following TIME INTERVAL measurement will not begin until an INTERVAL delay has
expired. The minimum value that INTERVAL sampling can take is 600 ns. The sorting routine will also
double-check to insure that minimum spacing requirements are observed.

Using the SINGLE mode, the HP 5371A will go through this EDGE/INTERVAL arming sequence of
"Block —___length" consecutive samples for each pass through the FOR/NEXT loop shown in the flow
diagram (as determined by the variable "Num __passes").

Program lines 1120 to 1150 configure the input circuitry, setting the trigger levels to appropriate values.
The program uses manual trigger modes at ECL levels, The external arm channel is configured to trigger
on TTL levels.

The remaining lines of code in this subroutine configure the HP 5371A for the binary output mode with
expanded data ON. In this mode, the HP 5371A will return both time samples and the event samples to
be used for the asymmetry calculations.

Acquiring and Processing Data from the HP 5371A
(Get__raw__data and Proc_—ti Subroutines)

The Get__ raw__data subroutine retrieves a block of binary data from the HP 5371A and extracts the
initial header information. The unprocessed data is stored in a buffer and passed to the processing
routine through a COMMON variable construct.

The Proc__ti subroutine converts the binary data to 32-bit real values for the event and time samples.
These individual samples are stored in arrays for later computation to determine the appropriate odd-to-
even or even-to-odd intervals.

The TIME INTERVAL configuration uses two separate hardware time interpolators. The configuration
has a 600 ps differential channel delay, internal to the HP 5371A. This 600 ps must be added to each
"stop" time sample to correct for the resulting skew.

Asymmetry Computations (Compute__asym Subroutine)

The "Compute —asym" subroutine uses the event and time samples to determine and group appropriate
odd-even or even-odd pairs, and subsequently calculate timing asymmetry.

As shown earlier in the derivation of the asymmetry computations, the intended spacing for the constant
frequency pattern, must be determined. This calculation is done in lines #2650 to #2710 by taking the
average pcn:iod 9f the enti.re measurement block, %{%) . To eliminate asymmetry affects from the
end points in this calculation, the algorithm uses transition edges of the same polarity.

Assuming a constant frequency pattern, the next portion of code checks for a possible amplitude dropout.
This is accomplished by determining the interval (or average interval, if events were not time stamped)
between all adjacent time samples in the block of measurements. If the average period between adjacent
samples exceeds 1.3 times the average transition time (program line #2780), an amplitude dropout is
detected.’ The asymmetry computations for this block of data are skipped and the data discarded.

54 value of 1.3 reflects a 30% margin. It may be desirable to modify this value for systems exhibiting greater write noise. 15
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The algorithm next finds the first time interval starting with an odd-numbered event and ending with an
even-numbered event. Beginning with an odd-numbered event, the algorithm searches for the first even-
numbered event which satisfies the minimum spacing requirement.

Once the interval has been determined, the value is normalized to a single transition-to-transition
interval. This satisfies the general case where all of the odd-to-even and even-to-odd intervals may not
represent the same number of transition intervals (this case may arise due to the minimum spacing
requirements between the start and stop data pulses necessary to avoid noise correlation). The normali-
zation is determined as follows:

Measured Interval = (Number of events over the interval X Minimum Transition Interval) + 2A
Rearranging:

2A = Measured Interval - (Number of events over the interval X Minimum Transition Interval)
Normalizing the interval to one clock period (Minimum Transition Interval + 2A):

Normalized Interval = Minimum Transition Interval +

(measured interval - (number of events over the interval) X Minimum Transition Interval)

Finally, the normalized interval is added to a running sum of odd-to-even intervals.

The algorithm then increments the starting pointer to an even-numbered event and determines an even-
to-odd interval in a similar fashion as that for the odd-to-even interval. The interval is normalized and
added to a running sum of even-to-odd intervals.

The program continues to determine intervals, alternating odd-to-even and even-to-odd until the last
time sample is encountered. If this is found on an even-to-odd pass, the last odd-to-even interval is
removed from its running sum so mean calculations are performed on equivalent sample sizes.

Finally, the resulting asymmetry computations are displayed for the current measurement block.

The remaining program code compiles an average asymmetry term over multiple blocks of data and
displays the cumulative results.

Summary Comments Regarding Timing Asymmetry Characterization:
In summary, these points are worthy of consideration:

1) The algorithm assumes that a constant frequency pattern has been written on the media.

2) In order to isolate asymmetry effects, time interval measurements must be taken between positive and
negative bipolar data pulses, and vice-versa. The event information which is available with the HP 5371A
binary data format is used to keep track of the sense of the pulse polarity. This method can be invalid if
an amplitude dropout occurs. The algorithm includes a check for dropouts before the asymmetry
calculations are performed.

3) Intervals used in asymmetry calculations must be long enough to avoid noise correlation between the
start and stop pulses of the time interval measurement (transition-to-transition type measurements). This
minimum spacing can be controlled by the user in the example program. Measuring the time of every
transition is not critical to this technique. Therefore, the HP 5371A and this application software may be
used to characterize timing asymmetry on systems with transfer rates well in excess of the specified
sampling rate (up to the 500 MHz bandwidth limit of the HP 5371A).




P %

e

4) Media preconditioning is important for effective characterization of timing asymmetry; DC erasure
will create worst-case asymmetry effects. The designer may wish to characterize timing asymmetry for
both directions of DC erasure.

5) Errors in the channel electronics (i.e. offsets at the zero-crossing detector comparator, etc.) can cause
asymmetry effects that cannot be separated from the head/media asymmetry under characterization.
However, the HP 5371A can be used to characterize channel errors by inputting a sine wave to the
channel electronics and using these routines to characterize any subsequent pulse-pairing.

6) The algorithm averages data over many intervals to remove the effects of read and write noise.

7) In creating the asymmetry algorithm, the write clock has been assumed to be relatively constant (e.g.
the write clock was stable, as was the spindle speed during the write and subsequent measurement
processes). The average transition spacing value is displayed with the asymmetry results in the example
program. In addition, asymmetry is assumed to be constant over the block of data.

8) In general, the timing offset effects of asymmetry and peak shift may reinforce each other, or may
reduce each other, depending on the media preconditioning and the data pattern overwritten. A constant
frequency pattern is used in this example for asymmetry characterization to minimize peak shift effects.
Non-constant frequency patterns such as "tripole” patterns tend to enhance peak shift effects. The peak
shift measurement to be described next will also detect timing asymmetry in a tripole data pattern.

Peak Shift or "Pulse Crowding" Characterization

Measurement Theory

Like timing asymmetry, the effect of peak shift is to systematically displace transition edges from their in-
tended position. While the effects are similar, the causes are different. Peak shift is the result of the
superposition of pulse shapes, so worst case data patterns are not constant frequency patterns, but
patterns which cause unequal superposition on either "side" of a pulse.

For conventional head/media systems, where the isolated pulse shapes tend to be symmetrical, the
dipole pattern (such as MFM(1,3) "DB6") exhibits worst-case peak shift. However, for thin-film technolo-
gies, the isolated pulse shapes tend to be asymmetrical. For these types of head/media systems, other
data patterns exhibit worst-case peak shift results. The example program demonstrates peak shift charac-
terization for a tripole pattern (conventional system tripole peak shift is generally equivalent to its dipole
peak shift).

The measurement technique will be to "time-sample” each edge in the tripole set. Like timing asymmetry
characterization, the polarity of the bipolar pulses will be followed by the odd/even event count values.
Keeping track of the pulse polarity offers the capability to also compute timing asymmetry for the tripole
data pattern.

To further demonstrate the capability of the HP 5371A’s continuous measurement format, the peak shift
algorithm is designed to measure minimum transition-to-transition spacings as small as 50 ns. This will
require two passes over the measurement area. A minor change in the HP 5371A’s measurement
configuration will allow every transition of the tripole set to be time-sampled in these two passes. (The
“Continuous Time Interval” and “Time Interval” measurement modes are both used.)

The first pass over the data will provide time samples for the "outer" data pulses of the tripole set (first
and third). The second pass will provide time samples for the first and second (middle) data pulses.
These two sets of time samples can then be used to compute peak shift as well as timing asymmetry for
the tripole data pattern.

17




Odd-numbered tripole Even-numbered tripole
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50ns < t < 100ns = 100ns

(a) In the first pass, the CONTINUOUS TIME INTERVAL mode is used to time-sample the
“outer” (first and third) transitions of the tripole.

Pass #2
Event

(b) In the second pass, the TIME INTERVAL mode is used to time-sample the first and
second transitions of the tripole.

* indicates transition is time-sampled.

Figure 10. Two-pass technique to time-sample every pulse in the tripole set. This technique can be used for
minimum transition-to-transition spacings between 50 ns and 100 ns.

Figure 10 illustrates how two passes over the measurement area retrieves the necessary timing informa-
tion. In order to calculate asymmetry, as well as to prevent it from biasing peak shift calculations, the data
is sorted into two groups: a tripole set with a "leading” odd-numbered pulse (for example, the tripole with
data pulses 1, 2 and 3 - in this example, odd-numbered pulses are positive polarity) and a tripole set with
a leading even numbered pulse (for example, the tripole with data pulses 4, 5 and 6 - the even-numbered
pulses are negative polarity). The following equations illustrate the calculation of peak shift for each set
of tripoles.

0Odd_odd_first_last = ((6d + 2k + 8) X Clock) - PSg, + PS
Odd_odd_first_middle = ((5d + 2k + 7) X Clock) - PSg, + PSy,
Odd_even_first_first = ((2d + k + 3) X Clock) - PSg, + PSg,
Odd_even_first_middle = ((3d + k + 4) X Clock) - PSg, + PSy,

Odd_even_first_last = ((4d + k + 5) X Clock) - PSg, + PSy,

Where the terms are defined as follows:

PSg, = peak shift of the first pulse position in a tripole with an odd-numbered first pulse.

]

PSg, = peak shift of the first pulse position in a tripole with an even-numbered first pulse.
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PSy,, = peak shift of the middle pulse position in a tripole with an odd-numbered first pulse.
PSy, = peak shift of the middle pulse position in a tripole with an even-numbered first pulse.
PSy, = peak shift of the last pulse position in a tripole with an odd-numbered first pulse.
PS;, = peak shift of the last pulse position in a tripole with an even-numbered first pulse.

d = minimum number of clock periods between transitions.

k = maximum number of clock periods between transitions.

For each tripole set, three peak shift values are to be determined, for a total of six distinct peak shift
values. Since peak shift must be described as a shift from the reference clock, an extra equation must be
included to describe this reference. This equation is formed by assuming that the phase lock loop acts
appropriately to compensate for peak shift in the system. The PLL should cause the total peak shift
across two adjacent tripole sets to add to zero (See Figure 11):

PSFO + PSMO + PSI_43 + PSFe + PSMe e PSI¢ =0

These six equations can be used to determine the distinct peak shift values for each transition (and pulse
polarity) in the tripole signal.

t= (4d + k + 5) x clock
e —
|
|
|
| |
| |
| |
| | |
| |
| |
| |
PS8, P P'Sh PS;' PS5y, FS._,
—» —e — o —» — .
PS;, + PSy, + PS,, + PS;, + PSy, + PS_ =0

Figure 11. An extra equation is used to determine peak shift. The equation is derived by assuming the PLL
forces the total peak shift offset to zero over adjacent tripole sets.

In practice the acquired data will also have read and write noise. Averages of values for the various
intervals are used in the above equations to determine peak shift values. Read and write noise effects are
“averaged out".
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The clock period is determined by using the middle transitions of adjacent even-numbered polarity
tripoles and dividing by the number of intermediate clock cycles. This is determined using the particular
(d,k) coding scheme. For example: a 2,7 code should have a total of 28 clock periods between "middle"
data pulses of tripoles with the same polarity. See Figure 12.

3 % clock

3 = glock 8 x clock 8 % clock 3 % clock
S | j
[ ' "'lr"'I.
B |
| I
I
\ |
| I
| I
| I
I I
| I
| [
[ Py}

t=(3+8+ 3+ 3+ 8+ 3)x clock

t= 28 x clock

Figure 12, The "clock" is determined by using time samples from middle transitions of tripoles with the same
pulse polarity. This measured interval is then divided by the required number of clock periods. For a RLL
(2,7) code, there are 28 clock periods between these transition pulses.

Once peak shift values have been determined, timing asymmetry can be calculated as the difference
between corresponding peak shift values (e.g. the difference between the average peak shift value for a
leading positive pulse in a tripole and a leading negative pulse in a tripole). Note that timing asymmetry
for the tripole pattern may not necessarily be the same as that for constant frequency patterns, nor will it
necessarily be equal for each of the three tripole transitions.

Measurement Configuration and Computer Algorithm

For applications where transition-to-transition spacings are less than 100 ns, two passes through the data
are required to obtain time samples for each pulse position in the tripole. The HP 5371A will first be
configured in the Continuous Time Interval mode to time sample the outer pulse positions (first and last
pulses of the tripole). The minimum time interval in this mode is 100 ns, so the middle pulse of the
tripole will be "missed” in each tripole grouping if the transition spacing is less than 100 ns. (Note,
however, that the HP 5371A event sample information will still count this transition, enabling us to keep
track of the pulse polarity.)

To obtain timing information for the middle transition position, a second pass over the data will be made
with the HP 5371A in the Time Interval mode. This pass will retrieve time samples for the first and
second data pulse positions, but always "miss” the last pulse position. Once again, the event sample
information offers a means to group measurements by pulse polarity.

These two data records offer all of the timing information necessary to compute peak shift using the
equations developed above. Notice that the technique requires that measurements begin with the first
pulse of a tripole. If the drive configuration does not allow this, a simple test may be added to the
program to determine the first time sample in a record that corresponds to the first transition position in
the tripole. This can be done by a comparison of measured time values.

Figure 13 shows a flow diagram for the peak shift program example.
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Figure 13. Program flow diagram for peak shift computations.
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Variable Initialization

The HP 5371A can make up to 4095 measurements in the binary HP-IB mode. Note that this implies
4096 time samples for the Continuous Time Interval mode or 8190 time samples for the Time Interval
mode. The number of measurements is determined with the variable "Block__length". The HP 5371A
determines the number of samples required to return the requested number of measurements.

To simplify the peak shift determination algorithm, the program forces the block length to an odd
number of measurements in line number 390.

Multiple passes over the data can be performed to further average read and write noise. The variable
"Num__passes" controls this value. A "pass” is defined as one block of Continuous Time Interval meas-
urements and one block of Time Interval measurements. One block of each is necessary to retrieve time
samples for each pulse position within the tripole.

The “Time__ 1" and "Event __ 1" data arrays hold the the respective time and event samples for the first
measurement setup (e.g. the "outer" pulse positions of the tripole). The "Time__2" and "Event—2" data
arrays hold the respective time and event samples for the second measurement setup (e.g. the "first” and
"second" pulse positions of the tripole). The remaining variables are used to keep running totals of the
peak shift values for each tripole polarity (even-numbered leading transition and odd-numbered leading
transition) for multiple passes over the data.

The variables "D" and "K" correspond to the particular RLL (d,k) code convention. The program example
is shown for a RLL (2,7) code.

“Time__hold__off" determines the time delay from an index pulse to the first time sample. The range
for this value is 2 ns to 8 seconds with 2 ns resolution. This mode can be used to delay past the sector
header field and position the measurement at the first data pulse of the tripole. The HP 5371A offers two
alternative holdoff modes: Edge and Event holdoff. These can be configured in the "Setup  5371a"
subroutine.

HP 5371A Configuration (Setup__ 5371a Subroutine)

This subroutine configures the HP 5371A for both data collection configurations. These configurations
are stored in the front panel memory (Instrument State Menu) of the HP 5371A. This approach speeds
the reconfiguration of the measurement setups during data collection. Note that front panel memory
locations 1 and 2 must have WRITE PROTECT off.

The first configuration sets the HP 5371A to Continuous Time Interval with the Time Holdoff arming
mode. A negative signal edge (for example, an index pulse) on the external arm channel begins the time
delay. Positive pulses are then counted on input channel A. Note that the manual input triggering mode is
used for these measurements. This avoids the Auto Trigger requirement for the signal to be present prior
to the beginning of the measurement for trigger level determination. This setup is stored in register 1 of
the Instrument State menu.

The second configuration sets the HP 5371A to Time Interval. All other HP 5371A functions remain the
same. This setup is stored in register 2.

Acquiring and Processing Data from the HP 5371A

The "Get__raw__data" subroutine retrieves a block of binary data from the HP 5371A and extracts the
header information. The unprocessed data is stored in a buffer and passed to the processing routines via
a COMMON variable construct.

The "Proc_ti" subroutines convert the binary data to 32-bit real values for event and time samples. The
routines check the data for counter overflows and adjust the values accordingly. For the Time Interval
mode, a 600 ps systematic term must be added to the "stop” sample to compensate for internal differen-
tial channel delays in the HP 5371A.
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Clock Determination (Det__clock Subroutine)

The average clock is calculated using the middle transition position time samples. The routine uses the
first "middle" pulse (assuming that measurements begin with the first pulse of a tripole set) and the last,
middle transition with the same polarity. The average clock value is calculated and the precision is
determined using the number of intervals averaged.

Drop Out Check (Drop—out __check Subroutine)

Using the odd/even numbered event convention to keep track of pulse polarity requires the assumption
that no amplitude dropouts occur. This subroutine verifies this assumption by checking for the appropri-
ate number of events between time samples. If a dropout is found, the data is discarded without perform-
ing the peak shift calculations.

Peak Shift Computations (Compute__pk__shift Subroutine)

This routine searches for appropriate intervals for the peak shift calculations. Separate running sums are
maintained for both sets of tripoles: odd-numbered leading data pulses and even-numbered leading data
pulses. These running sums are then used to calculate an average value for the peak shift

calculations.

Unlike the read/write noise program and the timing asymmetry program, the peak shift program does
not check for minimum spacing between time samples to avoid noise correlation. This check has been
omitted since the coding pattern provides for a maximum interval between tripoles (8 clock intervals for a
RLL (2,7) code) and the algorithm computes intervals between tripole groups. In general, this should
provide adequate margin to avoid pulse interactions between time samples used for the interval calcula-
tions.

Asymmetry Computations (Asymmetry Subroutine)
Asymmetry is calculated as the difference between corresponding peak shift values.

The remainder of the program returns the HP 5371A to front panel operation and deallocates the data
arrays.

Summary Comments Regarding Peak Shift Characterization
In summary, these points are worthy of consideration:

1) The example program demonstrates a fairly complex case. For conventional head/media systems with
minimum transition-to-transition spacing of more than 100 ns, the algorithm becomes significantly easier.
Data can be acquired in a single pass. However, many new drive designs are employing thin-film head
media systems and higher data rates that warrant demonstration of the tripole case.

2) In addition to peak shift and timing asymmetry, read and write noise could also be calculated from the
data in this example. In general, read noise will differ from the constant frequency pattern case. Peak
shift can serve to improve read noise figures as superposition effects may serve to sharpen the bipolar
signal peaks. These sharper pulse peaks will result in a steeper differentiated signal and subsequently less
susceptibility to noise in the read channel electronics.

3) The algorithm assumes that peak shift effects are constant for any particular transition polarity and
position within the tripole for the measurement block.

SThe example program for peakshift calculations demonstrates a technique for gathering timing information for a minimum
transition-to-transition spacing which; is greater than 50 ns and less than 100 ns. The interval between tripoles must also be greater
than 100 ns. For systems with minimum transition-to-transition spacings greater than 100 ns, the Continuous Time Interval mode
may be used and the data is acquired in a single pass.
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4) The results of this peak shift characterization may be used to determine the amount of precompensa-
tion required by the drive. In fact, it may be of interest to develop data reflecting the resulting peak shift
versus various precompensation values. Determining precompensation is generally an empirical process
since precompensation does not eliminate peak shift, but attempts to compensate for its effects.

5) Media preconditioning is important, as always, for comparable results. This is primarily due to timing
asymmetry effects which may add-to or subtract-from peak shift effects, depending on the overwritten
pattern and the media preconditioning.

6) Group delay problems in the read channel (or similar problems) will cause aggregate peak shift terms
that do not describe the actual head/media effects. The channel electronics should be characterized first
to determine whether such effects are biasing the data (an HP 8770A Arbitrary Waveform Synthesizer
can be used to input a tripole pattern to the channel electronics for subsequent characterization using this
HP 5371A technique).

7) This technique for determining peak shift derives a distinct term for each transition pulse position and
polarity in the tripole. Peak shift effects are normally seen as offsets or "kick outs" on the phase margin
plot. A large peak shift term for a particular transition pulse position may be difficult to detect with
conventional phase margin analysis as the offset occurs only once every six pulses. This HP 5371A
technique clearly depicts any variation in peak shift versus pulse position.
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Time Interval Results and Window Margin Analysis s

The techniques described in this application note serve to enhance the information provided by phase
margin analysis rather than replace it. While the phase margin analyzer excels at a rapid overview of the
drive’s aggregate timing performance, time interval techniques give the designer the ability to isolate
various timing effects: read noise and write noise can be separated from total noises described by the roll-
off in a typical phase margin plot, and aggregate offsets described by displacements in that plot can be
separated into individual peak shift and/or asymmetry terms. (See Figure 14).

Other time interval instrumentation is available which provide an alternate means to obtain the informa-
tion already provided by the phase margin analyzer. These products use histographic techniques to
present time interval information. It should be noted that while these products measure time interval
directly, they do not provide the continuous measurement capability of the HP 5371A Frequency and
Time Interval Analyzer. This continuous measurement capability is fundamental to the measurement
techniques described in this application note.

Throughout this application note, measurements have been computed over sample sizes of several
thousand. This differs from phase margin techniques which typically use sample sizes of 10° or 10°. These
large sample sizes are necessary to confidently extrapolate timing margin performance to error rates of
101 or less.

Recognizing that the statistical sample sizes differ significantly, it is possible to develop a model which
relates the time interval results for read noise, write noise, timing asymmetry and peak shift to aggregate
timing margin. The model must combine the offsets and noises of the head/media system with the offsets
and noises from the drive system.

Head/media system contribution to window margin loss at a 10" error rate is:

timing asymmetry + peak shift + 6.36 X V(read noise)’ + (write noise)?
For the whole system it becomes:

Window margin = Decoder half window -

(Ehead/media offsets + > channel offsets + 6.36 %

'V(E(head/media noises)? + 3 (channel noises)z]

Where:
Y head/media offsets = timing asymmetry + peak shift

3 (head/media noise)? = (read noise)® + (write noise)?
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Figure 14, This figure shows the relationship of the cumulative probability density function plot (phase margin
plot) and the histogram, as well as the relationship to the mathematical model described in the text.

Timing asymmetry and peak shift are used in their adjusted forms which directly account for their effects
in the timing window. The read and write noise terms are combined in a "sum-of-the-squares” fashion
(assuming that each noise term is independent). The aggregate noise is then multiplied by 6.36 (single-
sided calculation) to describe the required number of sigmas to obtain an error probability of 10
(assuming that the noise follows a Gaussian distribution).

As the equation shows, window margin is the difference between the half decoding window and the sum
of the offsets (asymmetries and peak shifts) and the sigmas required for a 10 probability of error. It
should be noted that this model describes the effects of one tail of the distribution, so the model is not
entirely accurate. However, unless the offset terms are zero, the tail described by this model will domi-
nate any error rate calculation (e.g. ignoring the non-dominant tail will produce an extremely small error
term).
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Appendix A: Glossary

Noise: generally expressed as a ratio to signal amplitude or by its sigma in nanoseconds. Noise can refer
either to the aggregate of all noises in the system or to the individual noise components themselves (see
Read Noise, Write Noise, and System Noise). Noises are assumed to be Gaussian (an assumption that
has been directly confirmed by phase margin analysis on conventional head/media systems through error
rates of 10'%).

Offsets: a term describing aggregate displacement (in ns) of the transition distribution mean within the
data decoding window (usually aggregate offset is the combination of any peak shift and asymmetry
effects).

Peak Shift: displacement of a transition peak due to interaction with adjacent pulses. This is generally
dominated by readback superposition, but secondarily affected by write process interactions.

Phase Margin Analysis: a time domain measurement which determines the available timing margin in
the decoder half window. Margin estimates for error rates on the order of 10" are accomplished by ex-
trapolating from sample sizes of 10° or 10° measurements. Typically error rate data is gathered by
accelerating error rates by “sliding” the timing window with respect to its nominal center position or by
“shrinking” the timing window about its center.

Read Noise: a term used to refer to the effects of system noise (generally preamp-dominated) on the
ability of the read path circuitry to reliably locate the actual transition position.

RLL Code: [Run-Length-Limited Code] general description for disk drive data encoding schemes.

SNR: [Signal-to-Noise Ratio] measurement (traditionally expressed in decibels) that relates the amount
of noise in the readback signal to the amplitude of that signal (this figure can be misleading in that it does
not necessarily describe the effects of the noise at the differentiator).

System Noise: a term describing electronic noises in the system (not to be confused with read noise).
Timing Asymmetry: also referred to as pulse-pairing; this term describes the advancement of positive
transition peaks relative to negative peaks, or vice-versa. This offset is generally caused by an asymmetry
in the head/media system’s isolated pulse; however, various read channel issues can also contribute to

timing asymmetry.

Window Margin: the difference between the data decoding window edge and the point on the closest tail
of the transition distribution that provides a probability of error equal to a target error rate.

Werite Noise: also referred to as transition noise; this term describes the inability of the media to support
transitions at the exact locations specified during write operations.
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Appendix B: Statistical Reminders

- |

Several statistical assumptions are important to the treatment of the measurement data as discussed in
this application note. These assumptions are not unusual to common measurement practice, but are
pointed out here for completeness.

It is assumed that the "noise" processes that are present in the disk drive environment are "random".
More precisely, it is assumed that the sources of noise are independent and fit a Gaussian (normal)
distribution. The mean and standard deviation values of this data, combined with the assumption of
normal distribution, allow a convenient description of transition timing variability. Assuming the distribu-
tion is Gaussian and normally distributed, read noise and write noise can be combined by virtue of the
Central Limit Theorem to obtain the window margin model described in this note. The normal distribu-
tion assumption may be verified using the Chi-Square test. This test gives a value indicating the "goodness
of fit" of sorted data (histogram) to a theoretical distribution (in this case, the Gaussian distribution).

Computational Formulas
The following formulas provide a convenient form to compute mean, variance and standard deviation.

Mean = ——
o

n n 2
o> (xxp)° - [E (xi-xl)]
i=1

i=1

Variance = am- 1)

n 2 o 2
oY (%)’ - |3 (%)
Standard Dewviation =_-\/ i=1 i=1

n(n - 1)

Running sums of data and the data? values simplify the computatic ns for large sample sizes.
For read and write noise calculations, the standard deviation result is divided by /2. This value is appro-

priate if the noise effects are equal and independent between the start and stop transitions of the time
interval measurement. Therefore, the variance value is divided by 2, or the standard deviation .

by /Z:

Standard Deviation = V Variance
So,

Standard Deviation _ \/ Variance
Va 2




D

p®

hn ™

The following table relates sigma (standard deviation) values, confidence intervals, and "error

probability",

—= 00— —% no —|
Confidence Interval Error Probability
1o 84 108
20 977 11
3o 9985 10*°
4o 99997 1044
So 9999997 1049
60 ~1.0 100
6.360 ~1.0 1010
To ~1.0 11 o
80 ~1.0 1052

HP 5371A Resolution Example

A time interval measurement is made from falling edge to falling edge of a MECL signal. The signal has

1 mV rms of noise with a fall time of 2.5 ns over an 800 mV swing. The HP 54002A 50 ohm input pod is

used with a -2 volt termination. The measured value is 100 ns.

-.8 Volts

-1.6 Voits

Resolution:

25 ns

Rise/Fall Time

,
)

MECL Period
100 ns

Measurement uncertainty example using Time Interval to
measure from falling edge to falling edge of an ECL signal.

= + 150 ps rms + Start Trigger Error = Stop Trigger Error.

1"f“r{200 wV rms)® + (1 mV rms)?

" VTZOO wV rms)? + (1 mV rms)?

Il
I+

150 ps rms *

]
i+

156 ps rms.

32 V/ns

32 V/ns

The resolution value computed above should be entered into the equation found on page 3 of this

application note:

+ (Actual Read Noise)?*

2
(Measured Result)? = (156 ps rms)

2

More examples of these kinds of calculations may be found in the Appendix of the HP 5371A Product

Note/Specification Guide.
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Appendix C: Related Literature

The following literature also describes the use of Hewlett-Packard products for disk drive applications.
Contact your local Hewlett-Packard Sales Office for more information.

1. Using the HP 5180A Waveform Recorder to Evaluate Floppy Disc Media and Drive Electronics (AN
313-9). Literature number 5952-7701.

2. HP 8770A Arbitrary Waveform Synthesizer Demo for Rigid Disc Applications (DISCDEMO). '

3. User’s Guide: HP 8770 Artibrary Waveform Synthesizer Demo for Rigid Disc Applications.

4. A. Kovalic, “HP 8770A Applications in Magnetic Disc Recording,” HP Journal, April 1988.

5. Synthesizing Magnetic Disc Read and Servo Signals with the HP 8770S (AN 314-2). Literature
number 5954-6357.

6. HP 8770A Arbitrary Waveform Synthesizer Data Sheet for Rigid Disc Applications. Literature
number 5952-6408.

7. Control System Development Using Dynamic Signal Analyzers (AN 243-2). Literature number
5952-5136.

HP 5371A Literature

1. HP 5371A Frequency and Time Interval Analyzer Data Sheet/Brochure, "Bringing A New
Dimension to Measurement Analysis,” Literature number 5952-7940.

2. HP 5371A Product Note/Specification Guide, Literature number 5952-7927.

3. Application Note 358-1. "Characterization of Frequency-Agile Signal Sources,” Literature number
5952-7924.

4. Application Note 358-2, "Jitter and Wander Analysis in Digital Communications,” Literature ‘
number 5952-7925. -

The majority of the techniques and concepts discussed in this application note were developed by Steve Brittenham of Hewlett- h ‘
Packard’s Disc Memory Division; subsequent HP 53714 implementation was performed by Bruce Greenwood of Hewlett-Packard’s
Santa Clara Division.
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Appendix D: Program Listings

350
360
370
380
3380
400
410
420
430
440
450
460
470
480
490
500
S1@
52@
530
540
550
560@
57@
ngth)
580
590

Program to Compute Read and Write Noise

FROM HP S371A DATA

COMPATIBLE WITH HP S371A FIRMWARE REV. 2745 OR LATER

!
|
b
|
{ PROGRAM REV. 3/21/88
i
|
!
!

ERBERBRFRRRRERRRRRRF LR ERRRRRRRRRRRRRRRERERRRRRREREERAARERRERFERERERA R RN

!
GRAFHICS QFF !
CUTPUT 2;CHR®(255)8CHRS(75);

OPTION BASE I

DIM Time_results(108@),Input_data(1500@)
DIM First_interval(100@)

INTEGER Isc ,Ctr_addr !
INTEGER Num_passes ,Block_length |
INTEGER Pass_number

REAL R_ns , W_ns

COM Buff$l 150081 BUFFER ,8HpS371a,8Controller_buf

|
Isc=7
Ctr_addr=3 !
Ctr_addr=Ctr_addr+100+lsc
RESET Isc I
CLEAR Isc
|
ASSIGN @Hp5371a TO Ctr_addr |
ASSIGN @Controller_buf TO BUFFER Buff$;FORMAT OFF
|

Block_length=1000

i
!
Num_passes=10@ !
|

[

CLEAR SCREENS

SET OPTION BASE
DECLARE VARIABLES
DIMENSION ARRAYS

SET UP COMMON BUFFERS
FOR 5371 TRANSFERS

USE INTERNAL HPIB Isc 7

SET UP 5371 HPIB
ADDRESSES AND RESETS
I%

ASSIGN BUFFER PATH TO
65371 AND CONTROLLER

INITIALIZE VARIABLES

INTERVALS WITHIN A BLOCK
>1@ AND <OR= 1000

NUMBER OF BLOCKS OF DATA

ALLOCATE TEMP ARRAYS

ALLOCATE REAL Sum(1:Block_length) ,Sum_squared(i:Block_length}

MAT Sum= (@) i
MAT Sum_squared= (@)

Setup_5371a(@HpS5371a,Block_length)

FOR Pass_number=1 TQ Num_passes
PRINT “WORKING ON PASS ";VAL$(Pass_number};" OF
PRINT VAL$(Num_passes)
Get_raw_datal(Input_data(*))

IF Pass_number=1 THEN
FOR Interval=! TO Block_length

INITIAL1ZE TEMF ARRAYS

SET UP 5371 TO TAKE DATA
LOOFP TO ACQUIRE DATA
QUER Num_passes

First_interval(Interval }=Input_data(Interval)

NEXT Interval

END IF
|

Add_stats{Sum(#) Sum_squared(#),Input_data(#*) First_interval(#) ,Block_le

NEXT Pass_number
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600
61@
620

630
640
658
660
670
680
630
700
710
720
730
740
750
760
770
780
790
800
gi1@
820
830

850
860
870
880
890
900
1@
920
930
940

| COMPUTE READ AND WRITE
! NOISES

Ru_noise({Sum(*),Sum_squared(*),R_ns W_ns Input_data(#),First_interval(®),B
lock_length Num_passes)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

QUTPU
LOCAL

"READ NOISE: ";
PROUND(R_ns ,-3):" ns"
“WRITE NOISE: ";
PROUND(W_ns ,-3);" ns”

T @HpS371a;"INT;0UTPUT ASCII*
@HpS371a

DEALLOCATE Sum(*),Sum_squared(#)

END

|
| PRINT RESULTS

RESTORE 5371A Y0 ASCII
STATE
LOCALIZE S371A

DEALLOCATE ARRAYS

I HRRRAERERRER R AR PR ERRRERRERRERRRERRRERRERRBRREARBERRERREERERF AR RN S

SUB Setup_S5371a(@HpS371a,INTEGER Block_length)

ER AR AR R AR R R AR RN R R RN R E R R R AR R AR R R R NN R R AR R R AR R RN R AR R R AR RN R RPN RN NS
840 Setup_S371a:! SUBPROGRAM TO SET UP THE HP 5371A FOR PERIOD MEASUREMENT MODE
| WITH "CYCLE" ARMING. A TIME SAMPLE WILL BE TAKEN EVERY 16 CYCLES OF
| THE INPUT SIGNAL.

DISP TAB(35);“CONFIGURING HP S371A"
REMOTE @HpS371a

QUTPUT @HpS371a;“PRESETSMODE SINGLE"
OUTPUT @HpS371a; "MENU INFO"

OUTPUT

QUTPUT @HpS371a;“MSIZE";Block_length

ouTPUT

L A;DELAY 18"
OQUTPUT @HpS371as " INPUT;MODE ,SEPARATE"
PUT @HpS371a;"INPUT;SOURCE A;TRIGGER MANUAL;;LEVEL -1.3;SLOPE NEG"

950

3960

970

9890

930

1000
101Q
1820
1030
1040
1050
1060
1070
1080
1030
1100
1110
1120
1130
1140
1150
1160
1170

ouT

OUTPUT

ouT
ouT

ouT

PUT ®HpS371a;“INPUT;SOURCE X;LEVEL 1.4"
PUT @HpS37ta;"INT;0UTPUT FPOINT"

PUT @HpS537ta; “NUM;EXPAND ON"

]3] e
SUBEND

SUB 6
|

comM

INT

@Hp5371a; “MEAS;FUNCTION PERIOD;SOURCE A"

@HpS371a; "ARMING EDCYCLE;START;CHANNEL X;SLOPE NEG;SAMPLE ; DCHANNE

@HpS371a; " INPUT ; SOURCE B; TRIGGER MANUAL*®

I SET X CHANNEL TRIG LEVEL
| TURN ON FLOATING POINT

| OQUTPUT FORMAT

| EXPANDED DATA GIVES

! G6ATE TIME INFO

! CLEAR PROMPT

|
!

FREREBEEAARARERBRAEERRREFAERAFIREERRRAERARARERERRRRAERRERARAARAE RS S

et_rau_data(Input_data(+))

EERR R R RN R RR R AR R R AR RN R R R R R AR R R R R R R PR R AR AR AR R AR AR AR AR AR R R RN RN
Get_raw_data:! SUBPROGRAM TO GET RAW 5371 DATA AND STRIP THE HEADER
I INFORMATION FROM THE BEGINNING OF THE DATA BLOCK

Buff$ BUFFER,@HpS371a ,@Controller_buf

EGER I

!
| DECLARE COMMON VARIABLES

| DECLARE INTEGER
1
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1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
131@
1320@
1330
1340
13580
1360
1370
1380

DISP TAB(35);"GETTING DATA" | PROMPT USER
| PREPARE 5371 TQ GET DATA
RESET @Controller_buf
TRIGGER @HpS371a
| TRANSFER DATA
ENTER @Hp5371a USING "#,7A“i;Headers$
Number_of_bytes=UAL(Header$[31])
TRANSFER @Hp5371a TO @Controller_buf;COUNT Number_of_bytes
|
FOR I=1 TO Number_of_bytes/18 I PARSE DATA
ENTER @Contreller_bufilnput_data(l? i ENTER AVERAGE (NQT USED)
ENTER @Controller_buf;ilnput_data(I) | ENTER WHOLE PERIOD
|  (MEASUREMENT GATE TIME)
NEXT I
i
DIsSp =" | CLEAR PROMPT
1
SUBEND
|
! FEREERFEEFRRERBRBERRBRRRRERERERERARBERRAERFFR AR LR RERREREERERARFRERAEREERHR
SUB Add_stats(Sum(#) ,Sum_squared(*),Input_data(*) Firat_interval(#) INTEGE

R Block_length}

1330
1400
1410
1420
1430
1440
1450
1460
)

1470

[ REREREE R R R R EERERRERERRERRERER R R RRRRE R REAPRBRRLRRRFERELRARE AR REER

Add_stats:! SUBPROGRAM TO KEEP RUNNING STATISTIC TOTALS

QISP TAB(29); "DOING INTERMEDIATE STATS" | PROMPT USER
|

| CREATE RUNNING SUMS FOR
FOR Pointer=1 TO Block_length ! EACH SAMPLE IN BLOCK
Sum(Pointer )=Sum(Pointer )+( Input_data(Pointer)-First_interval{Pointer)

Sum_squared{(Pointer }=Sum_squared(Pointer }+(Input_data(Pointer)-First_i

nterval(Pointer))*2

1480
1490
1500
1510
1520
1530
1540
1550

NEXT Pointer
|

gisp ** | CLEAR PROMPT
|

SUBEND

f REERRERREREERRERERERRERE R LR RFRREELEEERERE RN RERFRREAR R SRR R R RSN

156@ SUB Rw_noise(Sum(#),Sum_squared(*),R_ns,W_ns, K Input_data(*) First_interval(
=), INTEGER Block_length ,Num_passes)

1570
1580
1580
1600
1610
162@
1630
1640
165@
166@
1670
1680
1690
1700
1710
1720
1730

! RREBRRRERRERRRRFERRERERREFERFEREERAAZRRARRARREFRERRERRBRXRRRRSRR RN RS

Rw_noise:! SUBPROGRM TO COMPUTE READ AND WRITE NOISES

DIM Temp$[8@] DIMENSION TEMP STRING

CLEAR READ AND WRITE
NOISE RUNNING SUMS

Read_temp=0

Write_sum=0

Write_sum2=Q

Read_noise=@
Meani=(Sum(1)/Num_passes)+First_interval(1l)

]
|
Sqrt2=SQR(2) t INITIALIZE CONSTANT
i
!
|

| COMPUTE INTERMEDIATE
FOR Interval=1 T0O Block_length ! READ NOISES
| PROMPT USER OF PASS
Temp$="COMPUTING R/W NOISE ON INTERVAL "8VAL$(Interval)
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174Q DISP TAB(41-LEN{Temp$)/2);Temps

1750 I

1760 I CURRENT COLUMN
1770 Mean=(Sum( Interval )/Num_passes }+First_interval(Interval)

1780 I

175@ |

1800 Read_temp=(Sum_squared(Interval )-((Sum(Interval )*2}/Num_passes) )}/ (Num_
passes~1)

1810 |

1820 IF Read_temp<=@ THEN i

1830 Read_temp=@ !

1840 ELSE

185@ Read_temp=Read_temp/2

186@ END IF

1870 !

1880 |

189@ Read_noise=Read_noise+Read_temp ¢

1900 I

1910 Write_sum=Write_sum+(Mean—Meanl) !

1920 Write_sum2=Write_sumZ2+(Mean-Mean!)"2

1930 |

1940 NEXT Interval |

1950 !

1860 Disp “* I CLEAR PROMPT
1970 !

1980 R_ns=SQR{Read_noise/Block_length)*1,E+S ! WRITE NOISE
1990 W_ns=(((((Write_sum2-(Write_sum®2/Block_length))/(Block_length=1))".5))/

Sqri2 )+1.E+9

2000

2012 SUBEND

COMPUTE MEAN FOR THE

COMPUTE INTERMEDIATE
READ NOISE ARGUMENT

TEST ARGUMENT FOR CASE
OF ZERO READ NOISE

SUM READ NOISES FOR
COMPUTATION OF AVERAGE
COMPUTE WRITE NQISE SuMs

LOOP THROUGH ALL COLUMNS

COMPUTE FINAL READ AND

olé
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DQ

) -

1@

20

3e

40

5@

50

7Q

8@

30

100
11@
120
130
140
150
160
170
180
190
200
210
22e
230
240
250
26@
270
280
290
30Q
31e
320
330
340
350
368
370
38@
39e
400
410
420
430
440
450
460
470
480
430
500
510
520
53¢
540
550
560
570
580
590

Program to Compute Timing Asymmetry
FROM HP 5371A DATA
PROGRAM REV. 3/21/88

COMPATIBLE WITH HP S371A FIRMWARE REV. 2745 OR LATER

RERERREAERERBRREBERBRERRERRERREIRRERREERRRRREBEFRERAERRRERAERRBRBRRBLRERARRRN
1
GRAPHICS OFF I CLEAR SCREENS
QUTPUT 2;CHR$(¢255)&CHRE(75);
I
OPTION BASE 1 I SET OPTION BASE
|
COM /Data/ INTEGER Buff(1:819@,1:5) BUFFER ,8HpS371a ,8Controller_buf
INTEGER Qdd_ptr ,Even_ptr ,Block_length,Counter ! DECLARE INTEGERS
INTEGER Ctr_addr ,Rep ,Pass Num_passes,h Isc
REAL Events_oce ,Events_eo,Interval_oe,Interval_eo
REAL Trans_spacing,Asymmetry Min_spacing,Ave_asym
REAL Tot_tran_spac ,Ave_tran_spac,Tot_asym,Tot_counter
i
| DETERMINE NUMBER QF

Block_length=1000 I SAMPLES: >1@ AND <4036
Num_passes=1 ! DETERMINE NUMBER OF

| BLOCKS
Isc=7 | USE INTERNAL HPIB Isc¢ 7
Ctr_addr=3
Cir_addr=Ctr_addr+lsc+100 I SET 5371 HP-1B ADDRESS
RESET Isc
CLEAR Isc

ASSIGN @HpS371a TO Ctr_addr
ASSIGN @Controller_buf TO BUFFER Buff(+) SET UP BUFFERS FOR

53718 TRANSFERS

ALLOCATE REAL Time(8130)
ALLOCATE REAL Events(819@)

DIMENSION DATA ARRAYS

SET MINIMUM INTERFERENCE

Min_spacing=6,00E-7 FREE SPACING

INITIALIZE INTERMEDIATE
SUMS

Events_ce=0
Events_eso=0
Interval_ce=0
Interval_eo=0
Tot_asym=@
Tot_tran_spac=@
Tot_counter=0
Pass=0

Setup_S371a(Min_spacing ,®HpS5371a,8lock_length) SET UP 537! TQ TAKE DATA

LOOP TO ACQUIRE DATA
QUER Num_passes
FOR Rep=1 TO Num_passes
6et_raw_data(Block_length)
Proc_ti(Time(*) Events(#),Block_length}
Compute_asym(Time(*) Min_spacing ,Events(*) Asymmetry, Trans_spacing,Block

_length ,Rep ,Counter ,Pass)

K =




600 | UPDATE CUMULATIVE TOTALS
610 |  FOR EACH PASS THROUGH
620 | THE LOOP

B30 Tot_asym=Tot_asym+ABS(Asymmeiry)

640 Tot_tran_spac=Tot_tran_spac+Trans_spacing

B85@ Tot_counter=Tot_counter+Counter

BB@  NEXT Rep

6§70 !

6580 IF Pass=@ THEN Skip_comp ! SKIP COMPUTATIONS IF ALL
659@ | DATA DISCARDED BECAUSE
700 I OF DROPQUTS

710 !

720 Ave_asym=Tot_asym/Pass

730 Ave_tran_spac=Tot_tran_spac/Pass

740 !

750 !

76@ Skip_comp: I PRINT THE FINAL RESULTS
770  PRINT

78@  PRINT

79@ PRINT

800 PRINT * FINAL RESULTS®"

81@ PRINT “ASYMMETRY IS +/- ";VALS(ABS(PROUND(Ave_asym#*1.£+9,-3)));" ns"

820 PRINT “TRANSITION SPACING IS ";UALS(PROUND(Ave_tran_spac#!.E+3,-3));

830 PRINT “ na"

840 PRINT "VALUES AVERAGED QUVER";Pass;"PASS(ES)";

850 PRINT " OR"“;Tot_counter;”"INTERVALS FOR EACH DISTRIBUTION.*

86@ !

870 | RESTORE S371A TO ASCII
880 I &TATE

890 OUTPUT @HpS371ai"INT;0UTPUT ASCII™

300 LOCAL @Hp5371a | LOCALIZE 5371A

910 DEALLOCATE Time(+) Events(#) { DEALLOCATE ARRAYS

920 END

93@ |

9‘0 !i***i*ﬁ!**iﬁ*i”i**’*ﬁii*l’*‘*l’**'i*i’l’,**l{if"f'ﬂ"”ﬁ”"i*iifii
950 SUB Setup_5371a(Min_spacing,@HpS37!a,INTEGER Block_length)

960 !***i**!l**ﬂ*ﬁ{iii!’liii*!ﬁ*i***ﬁi!’**iﬂiifiifiﬁ*i’”‘li**iiiiil!**lii
97@ Setup_G5371a:! SUBPROGRAM TQ SET UP THE HP 5371A FOR TI MODE WITH INTERVAL
380 | SAMPLING. A TIME SAMPLE WILL BE TAKEN EVERY "Min_spacing“ SECONDS.
950 |

1200 DISP TAB(3@); "CONFIGURING THE HP S371A" | PROMPT USER

1210 |

1820 REMOTE @HpS371a

1830 QUTPUT @HpS5371ai"PRESET;SMODE SINGLE"

140 QUTPUT @HpS371ai“MENU INFO"

1850 QUTPUT @HpS371ai "NUM{EXPAND ON" | EXPANDED MODE RETURNS
1260 ! EUVENT INFORMATION ALSO
1@70 QUTPUT @HpS371a; "INT;0UTPUT BINARY™ | TURN ON BINARY QUTPUT
1280 {  FORMAT

1@3%e QUTPUT @HpS371a;"MEAS;FUNCTION TINTERVAL ; SOURCE A*

1100 QUTPUT @HpS5371a;"MSIZE";Block_length

111@ QUTPUT @HpS371a: "ARMING EDINTERVAL;START ;CHANNEL X;SLOPE NEG;SAMPLE;DELA
Y"iMin_spacing

1120 OUTPUT @HpS371a; " INPUT;MODE SEPARATE"

1130 OUTPUT @HpS371a;"“INPUT;SOURCE A;TRIGEER MANUAL ;LEVEL -1.3;SLOPE PQS"
1142 QUTPUT @HpS371a; “INPUT;SOURCE B;TRIGGER MANUAL™

1150 OUTPUT @HpS371a;“INPUT;SOURCE Xi;LEVEL 1.4"

116@ |

117@ LESe "=

118@ SUBEND




) ™

Dﬂ

1190
1200
121@
1220
1230
1240
1250
1260
1270
1280
1290
1300
131@
1320
1330
1340
135@
1360
137@
1380
1330
1400
1410
1420
1430
1440
1450
1450
1470
1480
1430
1508
1510
1520
153@
1540
1550
tS60
157@
158@
1590
1620
1610
1620
1630
1640
165@
1660
167@
1680
1630
1700
1710
1720
1730
1740
1750
1760
177@
1780

l ERREREZEREREABRRFARRRRERREERRRERRRRERPERRRARRAEERARRARERRRRAERERRRERERS

SUB Get_raw_data(INTEGER Block_length)

(R R R R F R Ry Y

Get_raw_data: ! SUBPROGRAM TO CAPTURE RAW BINARY DATA FROM THE HP S5371A AND

| STRIP THE HEADER INFORMATION OFF OF THE BLOCK. DATA IS STORED IN
| 16 BIT WORDS AND TRANSFERRED TO THE PROC_TI ROUTINE VIA A “COMMON"

{ CONSTRUCT.

| DECLARE COMMON
! VARIABLES

COM /Data/ INTEGER Buff(«) BUFFER ,8HpS371a ,8Controller_buf |

REAL Num_bytes

DISP TAB(35); "GETTING DATA"

TRIGGER @HpS371a
ENTER @8HpS371a USING “# ,A";jCharacter$

IF Character$<>"%" THEN
BEEP
DISP “BAD FIRST CHARACTER."
PRINT CHR$(128)
CONTROL 1 ,5;139
STOP
END IF

ENTER @HpS371ia USING “#,A";Character$

IF Character$<>"6" THEN
BEEP
DISP "BAD SECOND CHARACTER."
PRINT CHR$(128)
CONTROL 1 ,5:1389
STOP
END IF

ENTER @HpS5371a USING "% BA" ;A%
Num_bytes=UAL(AS)

IF Num_bytes<>2.0*Block_length#1@ THEN
BEEP
DISP “INVALID NUMBER OF BYTES."“
sTOP

END IF

RESET @Controller_buf

PROMPT USER
TRANSFER DATA

| CHECK FOR FIRST
! CHARACTER= ¢

CHECK FOR SECOND
CHARACTER= &

6ET THE NUMBER OF
BYTES EXPECTED

|

i

[}

I

| TRANSFER BLOCK OF

! DATA TO CONTROLLER
i

|

[

i

TIME INTERVAL MODE HAS

< SAMPLES PER
MEASUREMENT

| RESET CONTROLLER BUFFER

TRANSFER @Hp5371a TO @Controller_buf;COUNT Num_bytes WAIT

STATUS @Controller_buf ,4;Num_bytes

QIge *»
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178@ SUBEND

18082 !

]8]0 !ﬂl‘*lili‘li{lC*!**l‘ilQ’!ii*ii**ll’ll’!QfliQQO*ll{{ill!lﬂl*i**i*}lﬂ*i"
182@ SUB Proc_ti(Time(*) Events(#) INTEGER Block_length)

1830 R R R Y P s R Rt
184@ Proc_ti: |SUBPROGRAM TQ PROCESS THE RAW TI DATA AND RETURN CUMULATIVE
1850 I TIME AND EVENT ARRAYS. THIS PROGRAM ALSO CHECKS FOR QUERFLOWS IN
186@ | THE COUNT REGISTER UALUES.

1870 !

1880 COM /Data/ INTEGER Buff(=) BUFFER ,@HpS371a ,8Controller buf
1890 i
1800 DISP TAB(3@);"PROCESSING RAW DATA"

1910 INTEGER Row,Col,Interpolator ,Byte , Words_per_samp
192¢ REAL Systematic_err ,Unsigned_2_byte,Unsigned_4_byte
193e REAL Ovflw_ctr_event Ovflw_ctr_time

1940 Byte=8

195@ Unsigned_2_byte=2"16

1960 Unsigned_4_byte=2"32

1870 Ovflu_ctr_event=0

1880 Ovflw_ctr_time=2

1990 Words_per_samp=5 | 5 WORDS PER SAMPLE

2000 Systematic_err=6.Q0E-10 ! ADD IN BQ@PS SYSTEMATIC
2@10 | ERROR FOR TI A

202e Row=1

2030 Col=1

20490 Events(Row)=((Buff{Row,Col }4Unsigned_2 byte#(Buff(Row,Col )<0@))+(Buff(Row
,Lol+1)<@})*Unsigned_2_byte+Buff(Row,Col+1)

2050 Time(Row)=({Buff(Row,Col+2)}+Unsigned_2_byte#(Buff(Row,Col+2)<@))+(Buff(R
ow,Col+33<@))*Unsigned_2_byte+Buff(Row,Col+3)

2060 Interpolator=SHIFT(Buff(Row,Col+4) ,Byte)

207@ Time(Row)=Time{Row)*2.E-9-BINAND(31 ,Interpolator )« .E-10

2@80 Time(Row )=PROUND(Time(Row),-1@)

2090 | LOOP TO DETERMINE

2100 | EVENT AND TIME SAMPLES
2110 |

2120 ! FIRST FIGURE EVENTS
2130 FOR Row=2 TO Block_length#2

2140 Events{Rouw)=((Buff(Row,Col )+Unsigned_2_hyte*(Buff(Row,Col }<@))+(Buff(R

ow,Col+1)<@))*Unsigned_2_bytetBuff(Row,Col+1)+0vflw_ctr_event
2150 1
| CHECK FOR OVERFLOWS AND

2160 IF Events(Row)}<Events(Row-1) THEN

2170 Events(Row)=Events(Row)+Unsigned_4_byte I ARJUST ACCORDINGLY
2180 Ovfluw_ctr_event=0vflu_ctr_event+Unsigned_4_byte

2190 END IF

2200 I

2210 | FIGURE TIME SAMPLES
2229 Time(Row)=((Buff(Row,Col+2)+Unsigned_2_byte*(Buff(Row,Col+2 <@ ))+(Buff
(Row,Col+3)<@))*Unsigned_2_byte+Buff(Row,Col+3)

2230 |

2240 IF Row MOD 2=@ THEN

225@ | PROCESS STOP

226@ ! INTERPOLATOR DATA
2270 Time(Row)=Time{Row#2 .E-9-BINAND( 31 ,Buf f(Row ,Col+4)}*1 .E-10

2280 Time(Row)=Time(Row)+Systematic_err

2290 ELSE

2300 | PROCESS START

2310 I INTERPOLATOR DATA
2320 Interpolator=SHIFT(Buff(Row,Col+4) Byte)

2330 Time(Row)=Time(Row)*2 .E-3-BINAND( 31 ,Interpolator)*1 .E-10

2340 END IF
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2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
24580
2460
2470
EGER
2480
2490
2500
2510
2520
2530
2540
2550
2560
257@
2580
25390
2600
2610
2620
263@
2640
265@
2660
26870
268@
2689@
2700
2718
2720
2730
2740
2750
2760
277a
2780
2790
2800
2810
2820
2830Q
2840
2850
2860@
2870
288@
289@
290@
2910
2920
293@

]

IF Time(Row)<Time(Row=1) THEN { CHECK FOR QUERFLOWS
Time(Row)=Time(Row)+Unsigned_4 byte*2.E~9
Ovflw_ctr_time=0vflw_ctr_time+tUnsigned_4_byte

END IF

|
NEXT Row
|
piaE "
SUBEND
i
_l'iI'ﬂ‘lﬂ'*l‘il’.9’."Cl!‘li.i'.!i""'."'l.".l..'*i.l"*'.l{ili!ii
SUB Compute_asym(Time(#*) Min_spacing,Events(#*) Asymmetry,Trans_spacing,INT
Block_length ,Rep ,Counter Pass)

R O R R R Y
Compute_asym: ! SUBPROGRAM TO PERFORM ASYMMETRY COMPUTATIONS. THE PROGRAM
| ALSO DETERMINES THE WRITE CLOCK AND CHECKS FOR AMPLITUDE DROPOUTS.

i
DIM Msg$[40)
Msg$=""
DISP TAB(35);"COMPUTING ASYMMETRY" | PROMPT USER
Odd_ptr=1 I INITIALIZE POINTERS INTO
Even_ptr=0dd_ptr ! THE DATA
Trans_spacing=@
Counter=0
Pass=Pass+]

DETERMINE AVERAGE
TRANSITION SPACING BY
MEASURING TOTAL
INTERVAL BETWEEN LIKE

Ptr=Block_length#*2 POLARITY PULSES

IF Events(1) MOD 2=Events(Ptr) MOD 2 THEN
Trans_spacing=(Time(Ptr)-Time(1))/(Events(Ptr)-Events(1))
ELSE
Trans_spacing=(Time(Ptr-1)-Time(1))/(Eventa(Ptr-1)-Events(1))
ENO IF |
]
|
| CHECK FOR DROPQUTS
FOR I=2 TO Block_length#2
Period=(Time(l)-Tima(I-1))/(Events(I)-Events(I-1))
1
IF Period>Trans_spacing+*!.3 THEN
BEEP
PRINT "AMPLITUDE DROPOUT FOUND, NO CALCULATIONS PERFORMED"
Pass=Pass-1
GOTO Exit_compute
END IF
|
NEXT 1
|
| FIND FIRST QDD EVENT
IF Events(1) MOD 2=@ THEN
0dd_ptr=0dd_ptr+!
Even_ptr=0dd_ptr
END IF
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3540
3550
3560
3570
3580
3590
3600
3610
3620
3830
3640
3650
3660
3670
3680
36390
3700
371@
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
a3
3840

3860
3870
3880
3890
3900
391@

Temp_ptr=0dd_ptr FIND NEXT LEGAL EVEN

!

!
O0dd_ptr=Even_ptr ! STARTING POINT FOR
Even_ptr=Temp_ptr ! THE QDD PQINTER, SET

! UP EVEN POINTER FOR
REPEAT ! SUBSEQUENT SEARCH

0dd_ptr=0dd_ptr+! | (ABOVE) OR EXIT IF
!

IF Odd_ptr>Block_length#*2 THEN Compute TOO LARGE

UNTIL Events(Odd_ptr) MOD 2>.5
60T0 Odd_to_even LOOP UNTIL DONE

Subtracti_ce:Interval _oe=Interval_oe-Norm_int SUBTRACT THE LAST QDD

t
i
|
i
Msgé="LAST 0DD TO EVEN INTERVAL WAS NOT USED" ! TO EVEN INTERVAL TO
i EVEN UP THE SAMPLES
]
| COMPUTE THE DATA
Compute: ]
Asymmetry=(Interval _oe-Interval_eo)/Counter/4 | DIVIDE BY 4 TO DETERMINE
| _EFFECT IN THE HALF-
1 WINDOW
!
| PRINT RESULTS
QUTPUT 2;CHR$(255)8CHRS(75);
PRINT "CALCULATIONS ON PASS NUMBER";Rep
PRINT
PRINT
PRINT Msg$
PRINT “ASYMMETRY IS +/- “j;VAL$(ABS(PROUND(Asymmetry+*1.E+9,-3)));" ns*
PRINT "AVERAGE TRANSITION SPACING IS ";VAL$(PROUND(Trans_spacing*!.E+9, -
PRINT " na*
PRINT Counter;“ INTERUALS WERE USED FOR EACH DISTRIBUTION"
I
Exit_compute: !

|
prag-~*
|
SUBEND

41




300
310
320
3308
340
350
360
370
380
330
400
410
420
430
440
450
460
470
480
430
5ee
510
520
530
540
550
560
570
580
590
6500

Program to Compute Peak-Shift
FROM HP S371A DATA

PROGRAM REV. 3/21/88

COMPATIBLE WITH HP 5371A FIRMWARE REV. 2745 OR LATER

i AND 2. FOR PROPER OPERATION, THE WRITE PROTECT ON THESE REGISTERS
MUST BE TURNED OFF. SET-UPS STORED IN THESE LOCATIONS WILL BE
OVERWRITTEN.

THIS PROGRAM WILL FUNCTION CORRECTLY FOR MINIMUM TRANSITION-TO-
TRANSITION SPACINGS WITHIN A TRIPOLE THAT ARE GREATER THAN 5@ NS AND
LESS THAN 10@ NS,

ERRRRRR R RN R R R RN B RN R R ER R R R RN RN R AR RN RN R R AN R RN RN R R R R RR N R R R R NN
i
GRAPHICS OFF | CLEAR SCREENS
OUTPUT 2:CHR$(255)8CHR$(75);

i
|
|
I
|
[
|
| THIS PROGRAM USES THE HP S371A FRONT PANEL SAVE/RECALL REBISTERS
i
|
i
|
i
1
{
{

OPTION BASE 1 ! SET OPTICN BASE
I

COM /Data/ INTEGER Buff(1:4@96,1:7) BUFFER,8Hp5371a,8Controller_buf
|

INTEGER Ctr_addr ,0,K ,Rep_counter ,Num_passes, lsc,I
INTEGER Block_length
REAL O _ps_first_sum, 0_ps_mid_sum,0 _ps_last_sum,Clock
REAL E_ps_first_sum E_ps_mid_sum . E_ps_last_sum
REAL O_first,0_mid,0_last ,Mode_bytes Num_bytes
REAL E_first E_mid . E_last
REAL Time_hold_off
}
Block_length=1000 | DETERMINE NUMBER OF
|  SAMPLES: >1@ AND <4098
I
| FORCE BLOCK LENGTH TO
| 0ODD VALUE TO SIMPLIFY
i PEAK SHIFT ALGORITHM
IF Block_length MOD 2=0 THEN Block_length=Block_length-1
|
i
Num_passes=1 | DETERMINE NUMBER OF

| PAS3ES

i
Isc=7 | USE INTERNAL HPIB Isc 7
Cir_addr=3
Ctr_addr=Ctr_addr+Isc*100 | SET HPS37!1 HP-1B ADDRESS
RESET Isc
CLEAR Isc

ASSIGN @HpS37!a TO Ctr_addr
ASSIGN @Controller_buf TO BUFFER Buff(=)
!
ALLOCATE REAL Time_1(4@396) | DIMENSION DATA ARRAYS
ALLOCATE REAL Time_2(8192)
ALLOCATE REAL Events_1(40396)
ALLOCATE REAL Events_2(8192)
|
| INITIALIZE INTERMEDIATE
| SUMS
O_ps_first_sum=0

4




61@ O_ps_mid_sum=0
620 O_ps_last_sum=0Q
63@ E_ps_first_sum=@
640 E_ps_mid_sum=0
650 E_ps_last_sum=0
660 Rep_counter=9

670

680 D=1 ENTER THE (d,k) CODE
69@ K=3 DESCRIPTION

700

718 Time_hold off=1,0E-6 SET THE TIME HOLDOFF
720 VALUE

740 Setup_S371a(@HpS371a,Time_hold_off ,Block_length)! SETUP 53714 TO

-3
(€]
=

750 TAKE DATA IN BOTH TI
760 AND CONT. TI MODES
770

780 LOOP TO ACQUIRE DATA
790 OUVER Num_passes

800 FOR Rep=1 TO Num_passes

810 PRINT TABXY(35,1);"PASS NUMBER " iRep

820 QUTPUT @HpS371a;"+RCL,1" ! GET CONT. TI SETUP
830 Mode_bytes=14.0*(Block_length+!}

840 Get_raw_data(Mode_hytes)

850 Proc_ti_1(Time_1(*) Events_1(#) ,Block_length)

860 OUTPUT @HpS371a;“*RCL,2" | GET ¥1 SETUP

870 Mode_bytes=(14.@%2#Block_length)

880 Get_raw_data(Mode_bytes)

89@ Proc_ti_2(Time_2(#) Events_2(#) Block_length)

900 | DETERMINE THE CLOCK
910 i FROM THE T1 DATA
920 Det_clock(Time_2(+) Events_2(#) ,Clock ,Block_length,D ,K)

930 | CHECK FOR AMPLITUDE
940 I DROPOUTS

950 Drop_out_check{Events_1(#) Events_2(#) Result$,Block_length,D K}

960 !

g97@ IF Result$="DROPOUT" THEN Skip_block ! SKIP THIS PASS IF
980 ! AN AMPLITUDE DROPOUT
99e ! 1S FOUND

1000 !

1010 |  COMPUTE PEAK SHIFT

1020 Compute_pk_shft{Time_1l(#) Time_2(#) Events_1(*) Events_2(#*) Clock,0_ps_f
irat .0 _ps _mid.0_ps_last .E_ps_first . E_ps_mid,.E_ps_last .Block_length,D K}

1030 '

1040 0 _ps_first_sum=0_ps_first_sum+C0_ps_first

1050 O_ps_mid_sum=0_ps_mid_sum+0_ps_mid

1060 O_ps_last_sum=0_ps_last_sum+Q_ps_last

1070 E_ps_first_sum=E_ps_first_sum+E_ps_first

1080 E_ps_mid_sum=E_ps_mid_sum+E_ps_mid

1090 E_ps_lasti_sum=E_ps_last_sum+E_ps_last

1100 |
1110 Rep_counter=Repn_counter+i

1120 Skip_block:!

1130 NEXT Rep

1140

1150

116@ IF Rep_counter=@ THEN
1170 PRINT “NO_CALCULATIONS®
1180 Rep_counter=1

119@ G60TO Local_ctr

IF ALL DATA PASSES HAVE
DROPQUTS, THEN NO
CALCULATIONS SHOULD
BE PERFORMED




T

1200
1210
1220
1230
1240
1250
1260
127@
1280
129@
1300
131@
1320
1330
1340Q
135@
136@
1370
1380
139@
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
15208
153e
1540
1550
1560
1570
1580
1530
1600
1610
16290
1830
1640
1650
1660
1670
1689
1690
1700
1710
1720
1730
1740
1750@
1760
1770
1780
1790

END IF

0_first=PROUND(O_ps_first_sum/Rep_counter ,-11)
0_mid=PROUND(O_ps_mid_sum/Rep_counter ,-11)
0_last=PROUND(Q_ps_last_sum/Rep_counter ,-11)
E_first=PROUND(E_ps_first_sum/Rep_counter ,~11)
E_mid=PROUND(E_ps_mid_sum/Rep_counter ,-11)

E last=PROUND(E_ps_last_sum/Rep_counter ,~11)

PRINT “CLOCK: "iClocks=1.E+91" ns"

PRINT

PRINT “ODD-NUMBERED TRIPOLE RESULTS:"

PRINT

PRINT * FIRST EDGE PEAK SHIFT: "sQ _firstsl,E+9;
PRINT * MIDOLE EDGE PEAK SHIFT: *“30_mid#1,.E+9:"

PRINT * LAST EDGE PEAK SHIFT: "0 last*].E+%4°
PRINT

PRINT “EVEN-NUMBERED TRIPOLE RESULTS:"

PRINT

PRINT * FIRST EDGE PEAK SHIFT: “;E_firste]l . E+9;
PRINT * MIDDLE EDGE PEAK SHIFT: ";E_mid#l.E+39;"°
PRINT * LAST EDGE PEAK SHIFT: “:E_last*1.E+9;"
PRINT

Asymmetry(0_first E_first ,0_mid,E_mid,0_last ,E_la

Local_ctr:i
QUTPUT @HpS371a;"INT;OUTPUT ASCII®
LOCAL @HpS5371a

DEALLOCATE Time_1(*)
DEALLOCATE Time_2(*)
DEALLOCATE Events_i(*)
DEALLOCATE Events_2(#*)}
END

| R EERRERERRRERRRR R R R ER AR R R R AR RN AR AR N RT RN

SUB Setup S371a(@HpS371a,Time_hold_off ,INTEGER Bl
| R ERR AR RERRERE RPN RN IR R RN AR R B RRE R RN R
Setup_5371a:| SUBPROGRAM TQ SET UP HP S371A FOR TI
| SETUPS WILL BE STORED IN THE S371A FRONT PANEL

I
! PRINT THE RESULTS

* na
ns*
ns"

.
ns"
na®

[
! CALCULATE AND DISPLAY
I ASYMMETRY

i

st)

)

|

| RESTORE S371A TO ASCII
| STATE

| LOCALIZE THE S371A

i
[

| DEALLOCATE ARRAYS

|
{

EERREERREREARRERERRRERN
ock_length)
FEERERBEREBEREEERER RS
AND CONTINUQUS TI MODES.
MEMORY (INSTRUMENT

I STATE) FOR FASTER RECONFIGURATION. BOTH MEASUREMENT MODES USE TIME
| HOLDOFF ARMING TO POSITION THE BEGINNING OF THE MEASUREMENT AT THE

! BEGINNING OF A TRIPOLE SET. THIS HOLDOFF HAS

DISP TAB(3@); “CONFIGURING THE HP S371A°

REMOTE @HpS5371a
QUTPUT @HpS371a; “PRESET:SMODE SINGLE"

2 NS RESCLUTION.
I

TIME INTERVAL MODE
TO GET OUTER DATA

!
!
I SETUP #1: CONTINUQUS
i
|
| EDGES QF TRIPOLE




180@
1810
1820
1830
1840
1850

QUTRUT
QUTPUT
QUTPUT
OUTRUT
QUTPUT
QUTPUT

old_off

1860
1870
1880
1890
1300
1910
1920
193¢
1940
1950
1360
187@
138@
1990
2000
2010
2020
203Q
2040
205@
2060
2070
2e8e
2092
2100
2110
2120
213@
2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380

QuTPUT
QUTPUT
QUTPUT
QUTPUT
QUTPUT

QUTRUT
QUTPUT

oisp *
SUBEND

@Hp5371a; "INT; QUTPUT BINARY"

€Hp5371a; “NUM;EXPAND ON"

@HpS5371a; "MENU INFO"

@HpS5371a; "MEAS;FUNCTION CTINTERVAL ; SQURCE A"
@HpS5371a3 “MSIZE" ;Block_length

@HpS371a; "ARMING THOLDOFF ; START s CHANNEL X:SLOPE NEG:DELAY";Time_h

@HpS371a; " INPUT ;MODE ,SEPARATE"

@HpS371a;: "INPUT; SOURCE A;TRIGGER MANUAL ;LEVEL -1.3:1SLOPE POS"
@HpS371a; " INPUT: SOURCE Bi; TRIGGER MANUAL ;LEVEL @°
@HpS371a; " INPUT; SOURCE X;LEVEL 1.4"°

OHpS371a; "#SAV 1"

SETUP %2 TO GET
FIRST AND SECOND
DATA EDGES OF TRIPOLE

@HpS371a; "MEAS;FUNCTION TINTERVAL"
@HpS371a: "#SAV 2"

| SR XRXERRBERERRIFBHRFRRRRBRARF AR RRRBARRERERBPRRIRBRFRA AR RRRR
SUB Get_raw_data(Mode_bytes)
| #4%XRRFRBRRRR BRI R R R R REREFRE IR RAERFRRERE B AR AR RE R ERRERRARRBEEER RS
Get_raw_data:! SUBPROGRAM TO CAPTURE RAW BINARY DATA FROM THE HP 5371A AND
| STRIP OFF THE HEADER INFORMATION. DATA IS TRANSFERRED TO THE PROC_TI
| ROUTINES THROUGH A “"COMMON" CONSTRUCT. THE DATA 1S ORGANIZED INTO
| 18 BIT WORAOS.

REAL Num_bytes

! DECLARE COMMON
! VARIABLES

COM /Data/ INTEGER Buff(#) BUFFER,0HpS37ta ,8Controller_buf |
!

DISP TAB(3S5):"6ETTING DATA" | PROMPT USER

| TRANSFER DATA

TRIGGER @HpS371a

ENTER @Hp5371a USING “#,A";Character$ | CHECK FOR FIRST

| CHARACTER= &

IF Character®<>"#" THEN

BEEP

DISP “BAD FIRST CHARACTER."
PRINT CHR$(128)
CONTROL 1,5:139

STOP
END IF

ENTER @HpS5371a USING “8# ,A";iCharacter$

|
! CHECK FOR SECOND
! CHARACTER= &

IF Character$<>"6" THEN

BEEP
DIsP

"BAD SECOND CHARACTER."

PRINT CHRS(128)
CONTROL 1,51139

STOP

45



2390 END IF
2400 |
2410 ENTER @HpS371a USING “#,6A" A% | GET THE NUMBER OF
2420 Num_bytes=UAL(AS$) ! BYTES EXPECTED
2430 |

|

[

1

2440 IF Num_bytes DIV Mode_bytes<>1 THEN I CHECK FOR INVALID

2450 BEEP NUMBER OF BYTES

2460 DISP “INVALID NUMBER OF BYTES.® RETURNED

2470 STOP

2480 END IF

2490 !

2500 RESET @Controller_buf | RESET CONTROLLER BUFFER

2510 TRANSFER @HpS5371a TO @Controller_buf;COUNT Num_bytes WAIT
2520 STATUS @Controller_buf ,4;Num_bytes

2530 I

2540 grsy =~

255@ SUBEND

2560 1

2570 i

2580 R R e R e ]
2590 SUB Proc_ti_I1(Time_1(#) Events_1(#) INTEGER Block_length)

2600 [ # R R AR AR R AR ER R R R R R R R R R R R R R AR N AR E R E B R R AR A RAR SRR AR AR R R R RN
2610 Proc_ti_1:! SUBPROGRAM TO DETERMINE CUMULATIVE EVENT AND TIME ARRAYS FOR
2620 ! THE CONTINUQUS TI MODE WITH TIME HOLDOFF ARMING. THE PROGRAM ALSO
2630 ! CHECKS FOR OVERFLOWS IN THE COUNT REGISTERS.

2640 1

2650 COM /Data/ INTEGER Buff(#) BUFFER,@HpS371a,8Controller_buf

2660 |

2670 DISP TAB(3@); “PROCESSING RAW DATA*

2680 [

2690 INTEGER Row,Col,Interpolator ,Byte,Words_per_samp

2700 REAL Ovflw_ctr_time ,Ovflu_ctr_event

2710 REAL Unsigned_2_byte,Unsigned_4_byte

2720 ! INITIALIZE CONSTANTS
2730 I AND VARIABLES
2740 Byte=8

2750 Ovflu_ctr_time=0

2760 Ovflu_ctr_event=0

2770 Unsigned_2_byte=2"16

2780 Unsigned_4_byte=2"32

2790 Words_per_samp=7

2800 | CONVERT FIRST EVENT AND
2810 Col=1 I TIME SAMPLES
2820 Row=1

2830 Events_1(Row)=((Buff(Row,Col )+Unsigned_2_byte*(Buff(Row,Col }<0))+{Buff(R
ow,Col+1)<@))*Unsigned_2_byte+Buff(Row,Col+l)

2840 Time_1{Row)=((Buff{Row,Col+4 )tUnsigned_2_byte*(Buff(Row,Col+4)<0})+(Buff
(Row,Col+5)<@) #Unsigned_2_byte+Buff(Row,Col+5)

2850 Time_1(Row)=Time_1{(Row)*2,E~9-BINAND(3) ,Buff(Row,Col+E))#1 .E-10

2860 Time_1(Row)=PROUND(Time_1I(Row),-1@)

2870 [

2880 !

2890 I LOOP TO CONVERT REST
2900 ! OF EVENT AND TIME
2910 I SAMPLES

2920 !

2930 FOR Row=2 TO Block_length+! | FIGURE EVENT SAMPLES
2940 Events_1{(Row)=((Buff(Row,Col )+Unsigned_2_byte*(Buff(Row,Col )<@))+(Buff

(Row ,Col+1)<@))*Unsigned_2_byte+Buff(Row,Col+!1)+0Ovflw_ctr_event
2950 l




2960
297@
298@
2990
3eee
3ele
3020

IF Events_1(Row)<Events_1(Row—1) THEN | CHECK FOR QVERFLOWS
Events_1(Row)=Events_I(Row)tUnsigned_4_byte | AND ADJUST
Ovflw_ctr_event=0vflw_ctr_event+Unsigned_4_byte

END IF

i
| FIGURE TIME SAMPLES
Time_1{Row)=((Buff(Row,Col+4)+Unsigned_2 byte+*(Buff(Row,Col+4)<@))+(Bu

ff(Row,Col+5)<0))#Unsigned_2_byte+Buff(Row ,Col+S5)+0vflu_ctr_time

303@
30490
3050
3060
307e
3080
3030
3100
3110
3ize
313@
3140
3150
316@
3170
3ig0
3190
3200
3210
3220
323e
3240
3250
3280
3270
3280
3230
3300
3310
3320
3330
3340
3350
3360
3370
3380
3330
3400
3410
3420
3430
3440
3450

Time_1(Row)=Time_1(Row)*2.E-S~BINAND(31 ,Buff{Row,Col+E))*1 .E-1Q
|
IF Time_1(Row)<Time_1(Row-1) THEN | CHECK FOR QUERFLQWS
Time_1(Row)=Time_1(Row)tUnsigned_4_byte»2.E-9! AND ADJUST

Ovflw_ctr_time=Ovflw_ctr_time+Unsigned_4_byte
END IF
I
Time_1 (Row )=PROUND(Time_1(Row),-1@)
NEXT Row
DIse o
SUBEND

!
|
1
!ﬂ‘!li*ilii*i!l’ii"I*i*il{i**l'l'**il**l*i!*l'ﬁ.i*"’**’***i*i.'**
SUB Proc_ti_2(Time_2(#) Events_2(#) INTEGER Block_length)
!‘*ll.i.!l’ll!”..ll"l.’*iiiili'lil]ilii{‘lif‘l‘iiii'*l’f’**i"l’if"l’!
Proc_ti_2:1 SUBPROGRAM TQ DETERMINE CUMULATIVE TIME AND EVENT ARRAYS
| FOR THE TI MODE WITH TIME HOLDOFF ARMING. THE PROGRAM ALSO CHECKS
{ FOR OVERFLOWS IN THE COUNT REGISTERS.
i
COM /Data/ INTEGER Buff(+) BUFFER ,8HpS371a ,8Controller_buf
{
DISP TAB(3@); “PROCESSING RAW DATA"
!
INTEGER Row,Cel ,Interpolator ,Byte Words_per_samp
REAL Ovflw_ctr_time ,Ovflw_ctr_event
REAL Unsigned_2_byte ,Unsigned_4_byte
REAL Systematic_err

INITIALIZE CONSTANTS
! AND VARIABLES

Byte=8

Ovflw_ctr_time=0

Ovflu_ctr_event=0

Unsigned_2_byte=2"18

Unsigned_4_byte=2"32

Words_per_samp=7

Systematic_err=6.00E-10
I CONVERT FIRST EVENT AND
| TIME SAMPLE

Col=1

Row=1

Events_2(Row)=((Buff(Row,Col }+Unsigned_2_byte+{(Buff(Row,Col 1<) )+(Buff(R

ow,Col+1)<0@))+*Unsigned_2_byte+Buff(Row,Col+1)

3460
(Row
3470
348@
3490
3500
3510
3520

Time_2(Row)=((Buff(Row,Col+4)+Unsigned_2_byte*(Buff(Row,Col+4)<Q))+(Buff

,L0l1451)<0))*Unsigned_2_byte+Buff(Row,Col+5)

Interpolator=SHIFT(Buff(Row,Col+6) Byte)
Time_2(Row)=Time_2(Row)*2.E-9-BINAND(31 ,Interpolator)#1.E-10
Time_2(Row )=PROUND(Time_2{Row),~10)

{

{ LOOP TO CONVERT REST

| OF EVENT AND TIME
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3530 | SAMPLES

3540 |

3550 FOR Row=2 TO Block_length { FIGURE EVENT SAMPLES
356@ Events_2(Row)=((Buff(Row,Col }*Unsigned_2_byte*(Buff(Row,Col )<@))+(Buff
(Row ,Col+1)<@))*Unsigned_2_byte+Buff(Row,Col+! )+0vflu_ctr_event

3570 !

3580 IF Events_2(Row)<{Events_2(Row-1) THEN | CHECK FQOR OVERFLQOWS
3590 Events_2(Row)=Events_2(Row)tUnsigned_4_byte | AND ADJUST

360@ Ovflw_ctr_event=0vflw_ctr_eventtUnsigned_4_byte

3610 END IF

3620 !

3630 ! FIGURE TIME SAMPLES
3840 Time_2(Row)={(Buff(Row,Col+4 +Unsigned_2_byte*(Buff(Row,Col+4)<(@}))+(Bu
ff({Row,Col+5)<@))*Unsigned_2_byte+Buff(Row ,Col+5)+0vfluw_ctr_time

3652 !

3660 IF Row MOD 2=0 THEN

36870 | PROCESS STOP

3680 I INTERPOLATOR DATA
3690 Time_2(Row)=Time_2(Row)*2.E-3-BINAND(31 ,Buf f(Row ,Col+E))*1.E~10
3700 Time_2(Row)=Time_2(Row)+Systematic_err

3710 ELSE

3720 | PROCESS START

3730 I INTERPOLATOR DATA
3740 Interpolator=SHIFT(Buff(Row,Col+6) ,Byte)

3750 Time_2(Row)=Time_2(Row)*2.E-9-BINAND(31 ,Interpolator)*! .E-10@

3760 END IF

3770 |

3780 IF Time_2(Row)<Time_2(Row=-1) THEN I CHECK FOR QUERFLOWS
3790 Time_2{Row)=Time_2(Row)+Unsigned_4_byte*2.E-9! AND ADJUST

3800 Ovflw_ctr_time=0Ovflw_ctr_timetUnsigned_4_byte

3810 END IF

3820 I

3830 Time_2(Row )=PROUND(Time_2(Row),-10)

3840 NEXT Row

3850 I

3860 Erap =

387@ SUBEND

3880 !

3890 !

3902 | R R AR AR R AR R R R R ARER AR AR R RRR RN R R RN RN R R AR RR AR AR ER AR RN RS
391@ SUB Det_clock(Time_2(*),Events_2(¢(#+) ,Clock ,INTEGER Block_length,D ,K)

3920 BRI s e s X ]
333@ Det_clock:! SUBPROGRAM TO DETERMINE THE AVERAGE CLOCK FROM THE DATA. THE
3840 I SUBPROGRAM USES THE MIDODLE PULSE OF THE TRIPOLE, USING THE DATA FROM
3950 ! THE TI MODE (SETUP NUMBER 2).

3860 |

397@ DISP TAB(3Q); "DETERMINING AVERAGE CLOCK."

3380 ! DETERMINE AVERAGE CLOCK
3990 |

4000 Pir=Block_length#2 | FOR SETUP#2 (T1 M}
4010 | THERE ARE 2#N AVAILABLE
4020 | SAMPLES.

4030 !

4040 WHILE (Events_2(Ptr)-Events_2(2)) MOD 6<>@ | FIND A SAME POLARITY
405@ Pir=Pir-1 | MIBDOLE CLOCK PULSE
4060 END WHILE I TO USE AS AN ENDPOINT
4070 |

4080 Clock_intervals=( .5#(Ptr-2))#(2(D+| }+(K+1)) | DETERMINE THE NUMBER OF
4090 Clock=(Time_2(Ptr)-Time_2(2)}/Clock_intervals ! INTERMEDIATE CLOCK
4100 | INTERVALS AS A




4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
K)

4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4580
4570
4580

I FUNCTION OF THE CODE

Resolution=1,@00E-10/(Block_length®.5)

Clock=PROUND(Clock ,INT(LGT(Resolution))) | ADJUST THE CALCULATION
I  FOR APPROPRIATE
! RESOLUTION

gigp **®

SUBEND

|
|

] ARERRARRRREARRRARFREARARRFRBARAERER IR IR RERRRRERARR AR AR ERR RN RN

SUB DOrop_out_check(Events_1(#) Events_2(+) Result$ INTEGER Block_length,D,

| ERREREERRRERFEELFRRA AR R RRRBRAERRERREER LR EERRRRERERERRARERERA AR RRERS
Drop_out_check:! CHECK FOR AMPLITUDE DROPOUTS FOR THE TRIPOLE DATA PATTERN.
| THIS ALGORITHM WILL ONLY WORK FOR DATA-DATA SPACING > SONS AND
( < 1@@ NS.
|
DISP TAB(25); "CHECKING FOR AMPLITUDE DROP-QUTS."
Result$="NO DROPQUT"
Pir=1
WHILE Ptr<{=Block_length-1
f
IF Events_!(Ptr+1)-Events_1(Ptr)<>2 THEN Oropout
!
IF Events_2(Ptr+!)-Events_2(Ptr)<>1 THEN Oropout
|
Pir=Pir+l
i
IF Events_t(Ptr+1)-Events_I1(Ptr)<>1 THEN Dropout
|
IF Events_2(Ptr+])-Events_2(Ptr)}<>2 THEN Dropout
!
Ptr=Ptir+i
END WHILE
GOTO No_dropout
I
Dropout I
BEEP
PRINT “AMPLITUDE DROPQUT FOUND, IGNORE DATA BLOCK."
PRINT
Resul t$="DROPOUT"

No_dropout : |
pIgp-=
SUBEND
|
l

| SRRt AR AR RN R R R RR R RN A AR R RN RER R AR R RN RRRRR R R R R RR AR R R R R RO RERR

SUB Compute_pk_shft(Time_1(#) Time_2(#) ,Events_Il(#) Events_2(#+) Clock,0_ps

_first ,0_ps_mid,0_ps_last ,E_ps_first ,E_ps_mid,E_ps_last ,INTEGER Block_length,D K

)
459Q
4600
4610
4620
463@
4540
4650
4660
4670

| RN R R R R R R R R R R RN RN R RN N R RN R RN RN R R R AR AR R R AR R RN R R RN
Compute_pk_shft:! SUBPROBRAM TQO COMPUTE PEAK SHIFT FROM THE TWO PASSES QUER
| THE DATA,
I
DISP "CALCULATING PEAK SHIFT."

|
Odd_first_last=0 I INITIALIZE VARIABLES
Even_first_last=0
Eo_first_last=0




4680Q

Eo_last_last=@

4690 Even_mid_first=0

4700 Eo_mid_mid=0@

4710 Time_1: !

4720 Counter_1=0 | COMPUTE INTERVALS FROM
4730 Ptr=1 | TIME_1 TIME STAMP DATA
4740 |

4750 WHILE Ptr+7<{=Block_length !

4760 0dd_first_last=Time_1(Ptr+S)-Time_1(Ptr)+0dd_first_last

4770 Oe_first_first=Time_1(Ptr+2)-Time_1(Ptr)+0a_firast_first

4780 Qe_first_last=Time_1(Ptr+3)-Time_1{Ptr)+0e_first_last

47390 !

4800 Counter_1=Counter_1+1

4810 Ptr=Ptr+4

4820 L

4830 END WHILE

4840 I

4850 Odd_first_last=0dd_first_last/Counter_]

4860 Oe_first_first=0e_first_first/Counter_!

4870 Oe_first _last=0e_first_last/Counter_]

4880 !

4890 Time_2: ! COMPUTE INTERVALS FROM
4300 Ptr=1 I TIME_2 TIME STAMP DATA
4910 Counter_2=0

4920 WHILE Ptr+6<(=Block_length

4330 Odd_first_mid=Time_2(Ptr+5)-Time_2(Ptr)+0dd_first_mid

4340 Oe_first_mid=Time_2(Ptr+3)-Time_2(Ptr)+0e_first_mid

4350 Counter_2=Counter_2+!

4360 IF Counter_2>Counter_1 THEN

4370 Ptr=Block_length

4380 ELSE

4390 Pir=Pir+4

5000 END IF

5010 END WHILE

5020 |

5030 Odd_first_mid=0dd_first_mid/Counter_2

5040 Oe_first_mid=Qe_first_mid/Counter_2

S05e !

5069 | COMPUTE PEAK-SHIFT
5070 | TERMS

5080 !

5030 Aconst=0dd_first_last-(((8#D)+(2*K)+8)#Clock) | SET UP CONSTANTS TO
5100 Beconst=0dd_first_mid-(((S*D)+(2#K)+7)*Clock) I MAKE PROGRAMMING

5110 Cconst=0e first_first-(((2+#D)+(1#K)+3)#Clock) ! EQUATIONS EASIER

5120 Dconst=0e_first_mid=-({(3*D)+(1*K)+4)*Clock}

5130 Econst=0e_first_last-(((4#D)+(1*K)+5)*Clock)

5140 |

5150 O_ps_first=(0dd_first_last+0dd_first_mid+0e_first_first+0e_first_mid+Ce_
firat_last-((20#D)+(7#K)+27)#Clock)/(=6) | COMPUTE EACH PEAK SHIFT
5160 O_ps_mid=Bconst+0_ps_first I VALUE

5170 0_ps_last=Aconst+0_ps_first

5180 E_ps_first=Cconst+0_ps_first

519e E_ps_mid=Dconst+0_ps_first

5200 E_ps_last=Econst+0_ps_first

sz2i@e |

5220 |

5230 pIse . ""

524@ SUBEND

5250 |

S26e




5270
5280
5290
53ee
531Q
5320
5330
5340
5350
536@
8370

5390
5400
5410
5420
5430
5440
5450
5460

I LA AR AR Sl R R R R R R R R R R R R R R R R R 2]
SUB Asymmetry(0_first ,E_first 0_mid,E_mid,0_last ,E_last)
' REREREREREERERRRRRRARERRRRRERPERRERRRRRRBRRBRBERERAERLBERRRERPERRRNERE RN
Asymmetry:! SUBPROGRAM TO CALCULATE ASYMMETRY FROM THE TRIPOLE DATA PATTERN
|
DISP “CALCULATING ASYMMETRY."
| DETERMINE ASYMMETRY FOR
| TRIPOLE DATA PATTERN
|
First_asym=(PROUND(ABS(O_first-E_first),-11))
Middle_asym=(PROUND(ABS(O_mid-E_mid),-11))
Last_asym=(PROUND(ABS(O_last-E_last),-11))
|
PRINT "TRIPOLE ASYMMETRY:"
PRINT * FIRST EDGE: +/-";First_asyme! E+9:" ns"

PRINT * MIDDLE EDGE: +/-";Middle_asym#*1.E+9;" ns"
PRINT * LAST EDGE: +/-"jLast_asym*!.E+9;" ns"
|
nisp **
SUBEND
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For more information, call your local HP sales office listed in your telephone
directory or an HP regional office listed below for the location of your nearest
sales office. Ask for the Electronic Instrument Department.

United States:
Hewlett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

(301) 258-2000

Hewlett-Packard Company
5201 Tollview Dr.

Rolling Meadows, IL 60008
(312) 255-9800

Hewlett-Packard Company
5161 Lankershim Blvd.
No. Hollywood, CA 91601
(818) 505-5600

Hewlett-Packard Company
2000 South Park Place
Atlanta, GA 30339

(404) 955-1500

Canada:

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4VIM8
(416) 678-9430

Japan:
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168

(03) 331-6111

Latin America:
Hewlett-Packard Company
3495 Deer Creek Rd.,

Palo Alto, CA 94304 USA
(415) 857-1501

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street,
Blackburn, Victoria 3130
Melbourne, Australia

(03) 895-2895

Far East:

Hewlett-Packard Asia Ltd.
47/F China Resources Building
26 Harbour Road,

Hong Kong

(5) 833-0833

Germany:
Hewlett-Packard GmbH
Hewlett-Packard-Strasse
6380 Bad Homburg
West Germany

(49) 6172/400-0

() parara

France:

Hewlett-Packard France
Parc d‘activite du Bois Briard
2, avenue du Lac

91040 Evry Cedex, France
(33) 1/60778383

United Kingdom
Hewlett-Packard Ltd.

Miller House—The Ring
Bracknell

Berkshire RG12 1XN, England
(44) 344/424898

Italy:

Hewlett-Packard Italiana S.A.
Via G. di Vittorio, ¢

20063 Cernusco SIN (MI)
Milan, Italy

(39) 2/923691

Northern Europe:
Hewlett-Packard S.A.,
P.O. Box 999,

1180 AZ Amstelveen,
The Netherlands

(31) 201437771

Southeast Europe/Africa/
Middle East:
Hewlett-Packard S.A.
1217 Meyrin 1, Geneva
Switzerland

(41) 22/989651

Or Write To:

United States:
Hewlett-Packard Company
P.O. Box 10301,

Palo Alto, CA 94303-0890

Europe/Middle East/Africa:
Hewlett-Packard Company
Central Mailing Department,
P.O. Box 529,

1180 AM Amstelveen,

The Netherlands

For all other areas:
Hewlett-Packard Company
Intercontinental Headquarters
3495 Deer Creek Rd.,

Palo Alto, CA 94304

Data Subject to Change
Printed in US.A.
02-5952-7928
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